• Title/Summary/Keyword: Reverse genetics

Search Result 84, Processing Time 0.038 seconds

Germ-line MTHFR C677T, FV H1299R and PAI-1 5G/4G Variations in Breast Carcinoma

  • Ozen, Filiz;Erdis, Eda;Sik, Ebru;Silan, Fatma;Uludag, Ahmet;Ozdemir, Ozturk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2903-2908
    • /
    • 2013
  • Background: Various oncogenes related to cancer have been extensively studied and several polymorphisms have been found to be associated with breast cancer. The current report outlines analysis of germ-line polymorphisms for C677T, A1298C (MTHFR), Leiden, R2 (FV) and 5G/4G (PAI-1) in Turkish breast cancer patients. We studied 51 cases diagnosed with invasive ductal and operable with lymph node-positive breast cancer and 106 women as a control group. Materials and Methods: Peripheric blood-DNA samples were used for genotyping by StripAssay technique which is based on the reverse-hybridization principle and real-time PCR methods and results were compared statistically. Results: The frequency of the MTHFR gene 677T and 1298A alleles were significantly higher in cancer patients than in the healthy subjects. The T allele frequency in codon 677 was 2.3-fold and C allele frequency was 3.1-fold increased in BC when compared to the control group for the MTHFR gene. Both differences were statistically significant (OR: 2.295, CI: 1.283-4.106), p<0.006 and (OR: 3.131, CI:1.826-5.369), p<0.0001 respectively. The R2 allele frequency of FV gene was 5.1-fold increased in the current BC when compared to the control group and that difference was also statistically significant (OR: 5.133, CI: 1.299-20.28), p<0.02. Conclusions: The present data suggest that germ-line polymorphisms of C677T, C1298A for MTHFR and R2 for FV are associated in breast cancer and may be additional prognostic markers related to breast cancer survival. The results now need to be confirmed in a larger group of patients.

SLC35B2 Expression is Associated with a Poor Prognosis of Invasive Ductal Breast Carcinoma

  • Chim-ong, Anongruk;Thawornkuno, Charin;Chavalitshewinkoon-Petmitr, Porntip;Punyarit, Phaibul;Petmitr, Songsak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6065-6070
    • /
    • 2014
  • Background: Breast cancer is the most common malignancy in women worldwide, including Thailand, and is a major cause of mortality and morbidity, despite advances in diagnosis and treatment. Novel gene expression in breast cancer is a focus in searches for prognostic biomarkers and new therapeutic targets. Materials and Methods: The mRNA expression of novel B4GALT4, SLC35B2, and WDHD1 genes in breast cancer were examined in invasive ductal breast carcinoma (IDC) patients using quantitative real-time reverse transcription polymerase chain reaction (QRT-PCR). Results: Among these genes, increased expression of SLC35B2 mRNA was significantly associated with TNM stage III + IV of IDC (p<0.001). Hence, up-regulation of SLC35B2 may serve as a prognostic biomarker for poor prognosis, and is also a potential therapeutic target in breast cancer.

Down-Regulation of CYP1A1 Expression in Breast Cancer

  • Hafeez, S.;Ahmed, A.;Rashid, Asif Z.;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1757-1760
    • /
    • 2012
  • Breast cancer is a major cause of death in women worldwide. Mammary tissue expressing xenobiotic metabolizing enzymes metabolically activate or detoxify potential genotoxic breast carcinogens. Deregulation of these xenobiotic metabolizing enzymes is considered to be a major contributory factor to breast cancer. The present study is focused on the expression of the xenobiotic metabolizing gene, CYP1A1, in breast cancer and its possible relationships with different risk factors. Twenty five tumors and twenty five control breast tissue samples were collected from patients undergoing planned surgery or biopsy from different hospitals. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and western-blotting were used to investigate the expression of CYP1A1 in breast cancer control and disease samples. mRNA expression of CYP1A1 was down-regulated in 40% of breast tumor samples. Down-regulation was also observed at the protein level. Significnat relations were noted with marital status and tumour grade but not histopathological type. In conclusion, CYP1A1 protein expression was markedly reduced in tumor breast tissues samples as compared to paired control tissue samples.

RNA Interference in C. elegans: History, Application, and Perspectives

  • Min, Kyoeng-Woo;Lee, Jun-Ho
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.99-104
    • /
    • 2007
  • RNA interference (RNAi) is the phenomenon of gene silencing by double-stranded RNA (dsRNA) at transcriptional and post-transcriptional levels in a sequence-specific manner. Reverse genetic approaches using RNA interference (RNAi) have become a major tool for biological researches since its discovery in the nematode Caenorhabditis elegans. In this review, we overview how the RNAi phenomenon was discovered and how the underlying mechanism has been elucidated. We also describe and discuss how RNAi experiments can be performed and how RNAi can be used for genetic studies.

Detection of HER2 Status in Breast Cancer: Comparison of Current Methods with MLPA and Real-time RT-PCR

  • Pazhoomand, Reza;Keyhan, Elahe;Banan, Mehdi;Najmabad, Hossein;Karimlou, Masoud;Khodadad, Faranak;Iraniparast, Alireza;Feiz, Farnaz;Majidzadeh, Keivan;Bahman, Ideh;Moghadam, Fatemeh Aghakhani;Sobhani, Atoosa Madadkar;Abedin, Seyedeh Sedigheh;Muhammadnejad, Ahad;Behjat, Farkhondeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7621-7628
    • /
    • 2013
  • Human epidermal growth factor receptor (HER) status is an important prognostic factor in breast cancer. There is no globally accepted method for determining its status, and which method is most precise is still a matter of debate. We here analyzed HER2 mRNA expression by quantitative reverse transcription-PCR (qRT-PCR) and HER2 DNA amplification using multiplex ligation-dependent probe amplification (MLPA). In parallel, we performed a routine evaluation of HER2 protein by immunohistochemistry (IHC). To assess the accuracy of the RT-PCR and MLPA techniques, a combination of IHC and fluorescence in situ hybridization (FISH) was used, substituting FISH when the results of IHC were ambiguous (2+) and for those IHC results that disagreed with MLPA and qRT-PCR, this approach being termed IHC-FISH. The IHC results for four samples were not compatible with the MLPA and qRT-PCR results; the MLPA and qRT-PCR results for these samples were confirmed by FISH. The correlations between IHC-FISH and qRT-PCR or MLPA were 0.945 and 0.973, respectively. The ASCO/CAP guideline IHC/FISH correlation with MLPA was (0.827) and with RT-PCR was (0.854). The correlations between the IHC results (0, 1+ as negative, and 3+ as positive) and qRT-PCR and MLPA techniques were 0.743 and 0.831, respectively. Given the shortcomings of IHC analysis and greater correlations between MLPA, qRT-PCR, and FISH methods than IHC analysis alone with each of these three methods, we propose that MLPA and real-time PCR are good alternatives to IHC. However a suitable cut-off point for qRTPCR is a prerequisite for determining the exact status of HER2.

ORF5a Protein of Porcine Reproductive and Respiratory Syndrome Virus is Indispensable for Virus Replication (PRRS 바이러스 ORF5a 단백질의기능학적역할)

  • Oh, Jongsuk;Lee, Changhee
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, a DNA-launched reverse genetics system was developed from a type 2 porcine reproductive and respiratory syndrome virus (PRRSV) strain, KNU-12. The complete genome of 15,412 nucleotides was assembled as a single cDNA clone and placed under the eukaryotic CMV promoter. Upon transfection of BHK-tailless pCD163 cells with a full-length cDNA clone, viable and infectious type 2 progeny PRRSV were rescued. The reconstituted virus was found to maintain growth properties similar to those of the parental virus in porcine alveolar macrophage (PAM) cells. With the availability of this type 2 PRRSV infectious clone, we first explored the biological relevance of ORF5a in the PRRSV replication cycle. Therefore, we used a PRRSV reverse genetics system to generate an ORF5a knockout mutant clone by changing the ORF5a translation start codon and introducing a stop codon at the 7th codon of ORF5a. The ORF5a knockout mutant was found to exhibit a lack of infectivity in both BHK-tailless pCD163 and PAM-pCD163 cells, suggesting that inactivation of ORF5a expression is lethal for infectious virus production. In order to restore the ORF5a gene-deleted PRRSV, complementing cell lines were established to stably express the ORF5a protein of PRRSV. ORF5a-expressing cells were capable of supporting the production of the replicationdefective virus, indicating complementation of the impaired ORF5a gene function of PRRSV in trans.

Upregulation of the RNF8 gene can predict the presence of sperm in azoospermic individuals

  • Nazari, Majid;Babakhanzadeh, Emad;Zarch, Mohsen Aghaei;Talebi, Mehrdad;Narimani, Nima;Dargahi, Mandana;Sabbaghian, Marjan;Ghasemi, Nasrin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.1
    • /
    • pp.61-67
    • /
    • 2020
  • Objective: In this study, specimens from testicular biopsies of men with nonobstructive azoospermia (NOA) were used to investigate whether RNF8 gene could serve as a biomarker to predict the presence of sperm in these patients. Methods: Testicular biopsy specimens from 47 patients were classified according to the presence of sperm (positive vs. negative groups) and investigated for the expression of RNF8. The level of RNF8 gene expression in the testes was compared between these groups using reverse-transcription polymerase chain reaction. Results: The expression level of RNF8 was significantly higher in testicular samples from the positive group than in those from the negative group. Moreover, the area under the curve of RNF8 expression for the entire study population was 0.84, showing the discriminatory power of RNF8 expression in differentiating between the positive and negative groups of men with NOA. A receiver operating characteristic curve analysis showed that RNF8 expression had a sensitivity of 81% and a specificity of 84%, with a cutoff level of 1.76. Conclusion: This study points out a significant association between the expression of RNF8 and the presence of sperm in NOA patients, which suggests that quantified RNF8 expression in testicular biopsy samples may be a valuable biomarker for predicting the presence of spermatozoa in biopsy samples.

Overexpression of a Chromatin Architecture-Controlling ATPG7 has Positive Effect on Yield Components in Transgenic Soybean

  • Kim, Hye Jeong;Cho, Hyun Suk;Pak, Jun Hun;Kim, Kook Jin;Lee, Dong Hee;Chung, Young-Soo
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.237-242
    • /
    • 2017
  • AT-hook proteins of plant have shown to be involved in growth and development through the modification of chromatin architecture to co-regulate transcription of genes. Recently, many genes encoding AT-hook protein have been identified and their involvement in senescence delay is investigated. In this study, soybean transgenic plants overexpressing chromatin architecture-controlling ATPG7 gene was produced by Agrobacterium-mediated transformation and investigated for the positive effect on the important agronomic traits mainly focusing on yield-related components. A total of 27 transgenic soybean plants were produced from about 400 explants. $T_1$ seeds were harvested from all transgenic plants. In the analysis of genomic DNAs from soybean transformants, ATPG7 and Bar fragments were amplified as expected, 975 bp and 408 bp in size, respectively. And also exact gene expression was confirmed by reverse transcriptase-PCR (RT-PCR) from transgenic line #6, #7 and #8. In a field evaluation of yield components of ATPG7 transgenic plants ($T_3$), higher plant height, more of pod number and greater average total seed weight were observed with statistical significance. The results of this study indicate that the introduction of ATPG7 gene in soybean may have the positive effect on yield components.

Current status on plant functional genomics (식물 유전자 연구의 최근 동향)

  • Cho, Yong-Gu;Woo, Hee-Jong;Yoon, Ung-Han;Kim, Hong-Sig;Woo, Sun-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.115-124
    • /
    • 2010
  • As the completion of genome sequencing, large collection of expression data and the great efforts in annotating plant genomes, the next challenge is to systematically assign functions to all predicted genes in the genome. Functional genome analysis of plants has entered the high-throughput stage. The generations and collections of mutants at the genome-wide level form technological platform of functional genomics. However, to identify the exact function of unknown genes it is necessary to understand each gene's role in the complex orchestration of all gene activities in the plant cell. Gene function analysis therefore necessitates the analysis of temporal and spatial gene expression patterns. The most conclusive information about changes in gene expression levels can be gained from analysis of the varying qualitative and quantitative changes of messenger RNAs, proteins and metabolites. New technologies have been developed to allow fast and highly parallel measurements of these constituents of the cell that make up gene activity. We have reviewed currently employed technologies to identify unknown functions of predicted genes including map-based cloning, insertional mutagenesis, reverse genetics, chemical mutagenesis, microarray analysis, FOX-hunting system, gene silencing mutagenesis, proteomics and chemical genomics. Recent improvements in technologies for functional genomics enable whole-genome functional analysis, and thus open new avenues for studies of the regulations and functions of unknown genes in plants.