Browse > Article
http://dx.doi.org/10.4014/mbl.1501.01002

ORF5a Protein of Porcine Reproductive and Respiratory Syndrome Virus is Indispensable for Virus Replication  

Oh, Jongsuk (animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Lee, Changhee (Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Publication Information
Microbiology and Biotechnology Letters / v.43, no.1, 2015 , pp. 1-8 More about this Journal
Abstract
In this study, a DNA-launched reverse genetics system was developed from a type 2 porcine reproductive and respiratory syndrome virus (PRRSV) strain, KNU-12. The complete genome of 15,412 nucleotides was assembled as a single cDNA clone and placed under the eukaryotic CMV promoter. Upon transfection of BHK-tailless pCD163 cells with a full-length cDNA clone, viable and infectious type 2 progeny PRRSV were rescued. The reconstituted virus was found to maintain growth properties similar to those of the parental virus in porcine alveolar macrophage (PAM) cells. With the availability of this type 2 PRRSV infectious clone, we first explored the biological relevance of ORF5a in the PRRSV replication cycle. Therefore, we used a PRRSV reverse genetics system to generate an ORF5a knockout mutant clone by changing the ORF5a translation start codon and introducing a stop codon at the 7th codon of ORF5a. The ORF5a knockout mutant was found to exhibit a lack of infectivity in both BHK-tailless pCD163 and PAM-pCD163 cells, suggesting that inactivation of ORF5a expression is lethal for infectious virus production. In order to restore the ORF5a gene-deleted PRRSV, complementing cell lines were established to stably express the ORF5a protein of PRRSV. ORF5a-expressing cells were capable of supporting the production of the replicationdefective virus, indicating complementation of the impaired ORF5a gene function of PRRSV in trans.
Keywords
PRRSV; reverse genetics; ORF5a; complementation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sagripanti JL, Zandomeni RO, Weinmann R. 1986. The cap structure of simian hemorrhagic fever virion RNA. Virology 151: 146-150.   DOI
2 Lai CC, Jou MJ, Huang SY, Li SW, Wan L, Tsai FJ, et al. 2007. Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease. Proteomics 7: 1446-1460.   DOI
3 Meng XJ, Paul PS, Halbur PG, Lum MA. 1995. Phylogenetic analysis of the putative M (ORF 6) and N (ORF 7) genes of porcine reproductive and respiratory syndrome virus (PRRSV): implication for the existence of two genotypes of PRRSV in the U.S.A. and Europe. Arch. Virol. 140: 745-755.   DOI
4 Lee YJ, Park C-K, Nam E, Kim S-H, Lee O-S, Lee DS, et al. 2010. Generation of a porcine alveolar macrophage cell line for the growth of porcine reproductive and respiratory syndrome virus. J. Virol. Methods 163: 410-415.   DOI
5 Lee YJ, Lee C. 2010. Deletion of the cytoplasmic domain of CD163 enhances porcine reproductive and respiratory syndrome virus replication. Arch. Virol. 155: 1319-1323.   DOI
6 Lv J, Zhang J, Sun Z, Liu W, Yuan S. 2008. An infectious cDNA clone of a highly pathogenic porcine reproductive and respiratory syndrome virus variant associated with porcine high fever syndrome. J. Gen. Virol. 89: 2075-2079.   DOI
7 Meulenberg JJ, Hulst MM, de Meijer EJ, Moonen PJM, den Besten A, De Kluyver EP, et al. 1993. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192: 62-72.   DOI
8 Meulenberg JJ, Bos-de Ruijter JN, van de Graaf R, Wensvoort G, Moormann RJ. 1998. Infectious transcripts from cloned genome-length cDNA of porcine reproductive and respiratory syndrome virus. J. Virol. 72: 380-387.
9 Nam E, Lee C. 2010. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet. Microbiol. 144: 41-50.   DOI
10 Cavanagh D. 1997. Nidovirales: a new order comprising coronaviridae and arteriviridae. Arch. Virol. 142: 629-633.
11 Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, et al. 1992. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J. Vet. Diagn. Invest. 4: 117-126.   DOI
12 Dokland T. 2010. The structural biology of PRRSV. Virus Res. 154: 86-97.   DOI   ScienceOn
13 Firth AE, Zevenhoven-Dobbe JC, Wills NM, Go YY, Balasuriya UB, Atkins JF, et al. 2011. Discovery of a small arterivirus gene that overlaps the GP5 coding sequence and is important for virus production. J. Gen. Virol. 92: 1097-1106.   DOI   ScienceOn
14 Forsberg R. 2005. Divergence time of porcine reproductive and respiratory syndrome virus sub-types. Mol. Biol. Evol. 22: 2131-2134.   DOI
15 Hanada K, Suzuki Y, Nakane T, Hirose O, Gojobori T. 2005. The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol. Biol. Evol. 22: 1024-1031.   DOI
16 Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP. 2011. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J. Gen. Virol. 92: 1107-1116.   DOI   ScienceOn
17 Keffaber KK. 1989. Reproductive failure of unknown etiology. Am. Assoc. Swine Practitioners Newsletter 1: 1-9.
18 Bautista EM, Faaberg KS, Mickelson D, McGruder ED. 2002. Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus. Virology 298: 258-270.   DOI
19 Kroese MV, Zevenhoven-Dobbe JC, Bos-de Ruijter JN, Peeters BP, Meulenberg JJ, Cornelissen LA, et al. 2008. The nsp1alpha and nsp1 papain-like autoproteinases are essential for porcine reproductive and respiratory syndrome virus RNA synthesis. J. Gen. Virol. 89: 494-499.   DOI
20 Albina E. 1997. Epidemiology of porcine reproductive and respiratory syndrome (PRRS): an overview. Vet. Microbiol. 55: 309-316.   DOI   ScienceOn
21 Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, et al. 1992. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). J. Vet. Diagn. Invest. 4: 127-133.   DOI
22 Boyer JC, Haenni AL. 1994. Infectious transcripts and cDNA clones of RNA viruses. Virology 198: 415-426.   DOI
23 Wensvoort G, Tepstra C, Pol JMA, ter Laak EA, Bloemraad M, de Kluyver EP, et al. 1991. Mystery swine disease in the Netherlands: the isolation of Lelystad virus. Vet. Q. 13: 121-130.   DOI
24 Ziebuhr J, Snijder EJ, Gorbalenya AE. 2000. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81: 853-879.   DOI
25 Truong HM, Lu Z, Kutish GF, Galeota J, Osorio FA, Pattnaik AK. 2004. A highly pathogenic porcine reproductive and respiratory syndrome virus generated from an infectious cDNA clone retains the in vivo virulence and transmissibility propertiesof the parental virus. Virology 325: 308-319.   DOI
26 van Aken D, Snijder EJ, Gorbalenya AE. 2006. Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing. J. Virol. 80: 3428-3437.   DOI
27 Wu, WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, et al. 2001. A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287: 183-191.   DOI
28 Zhang S, Zhou Y, Jiang Y, Li G, Yan L, Yu H, Tong G. 2011. Generation of an infectious clone of HuN4-F112, an attenuated live vaccine strain of porcine reproductive and respiratory syndrome virus. Virol. J. 8: 410.   DOI
29 Snijder EJ, Meulenberg JJ. 1998. The molecular biology of arteriviruses. J. Gen. Virol. 79: 961-979.   DOI
30 Snijder EJ, Dobbe JC, Spaan WJM. 2003. Heterodimerization of the two major envelope proteins is essential for arterivirus infectivity. J. Virol. 77: 97-104.   DOI
31 Nam E, Park C-K, Kim S-H, Joo Y-S, Yeo S-G, Lee C. 2009. Complete genomic characterization of a European type 1 porcine reproductive and respiratory syndrome virus isolate in Korea. Arch. Virol. 154: 629-638.   DOI
32 Nelsen CJ, Murtaugh MP, Faaberg KS. 1999. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J. Virol. 73: 270-280.
33 Oh J, Lee C, 2012. Proteomic characterization of a novel structural protein ORF5a of porcine reproductive and respiratory syndrome virus. Virus Res. 169: 255-263.   DOI
34 Nelson EA, Christopher-Hennings J, Drew T, Wensvoort G, Collins JE, Benfield DA. 1993. Differentiation of US and European isolates of porcine reproductive and respiratory syndrome virus by monoclonal antibodies. J. Clin. Microbiol. 31: 3184-3189.
35 Nielsen HS, Liu G, Nielsen J, Oleksiewicz MB, Botner A, Storgaard T, et al. 2003. Generation of an infectious clone of VR-2332, a highly virulent North American-type isolate of porcine reproductive and respiratory syndrome virus. J. Virol. 77: 3702-3711.   DOI
36 Nuemann EJ, Kliebenstein JB, Johnson CD, Mabry JW, Bush EJ, Seitzinger AH, et al. 2005. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J. Am. Vet. Med.Assoc. 227: 385-392.   DOI
37 Plagemann PG. 2003. Porcine reproductive and respiratory syndrome virus: origin hypothesis. Emerg. Infect. Dis. 9: 903-908.   DOI
38 Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.