• Title/Summary/Keyword: Reverse flow type

Search Result 92, Processing Time 0.033 seconds

Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions

  • Lu, Yonggang;Wang, Xiuli;Fu, Qiang;Zhao, Yuanyuan;Zhu, Rongsheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2207-2220
    • /
    • 2021
  • Lead alloy is used as coolant in Lead-based cooled Fast Reactor (LFR). The natural characteristics of lead alloy are combined with the simple structural design of LFR. This constitutes the inherent safety characteristics of LFR. The main work of this paper is to take the main coolant pump (MCP) in the lead-cooled fast reactor (LFR) as the research object, and to study the flow pattern distribution of the internal flow field under the reverse rotation pump condition, the reverse rotation positive-flow braking condition and the reverse rotation negative-flow braking condition. In this paper, the double-outlet volute type and the space guide vane are selected as the potential designs of the CLEAR-I MCP. In this paper, the CFD method is used to study the potential reverse accident of the MCP. It is found that the highest flow velocity in the impeller appears at the impeller outlet, and the Q-H curves of the two design programs basically coincide. The space guide vane type MCP has better hydraulic performance under the reverse rotation positive-flow condition, the Q-H curves of the two designs gradually separate with increasing flow rate, and the maximum flow velocity inside the space guide vane type MCP is obviously lower than that of the double-outlet volute type. For the reverse rotation test of MCP, only the condition of the forward rotating pump of the main coolant pump is tested and verified. For the simulation of the MCP in LBE medium, it proved that the turbulence model and basic settings selected in the simulation are reliable.

Study on the reverse engineering and performance test in the development of screw flowmeter (스크류유량계 개발에 있어서의 역공학 및 성능평가에 관한 연구)

  • Kim Jong-Yoon;Hwang Jong-Dae;Lee Sang-Ryul;Jung Yoon-Gyo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.132-137
    • /
    • 2005
  • This research presents a modeling and a manufacturing method of screw type flow meter. This paper introduces the efficient design and manufacturing method of screw type flow meter using reverse engineering and test technology. The methods introduced this paper utilize the reverse engineering that is increasing accuracy of modeling and manufacturing of reverse model. And then it can be used in performance test with hydraulic test equipment. Hence this can be used in the basic document for development of the quite accurate flow meter.

  • PDF

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역할에 관한 연구)

  • 김기동;조명래;한동철;최상현;문호지
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.87-93
    • /
    • 1998
  • Pressure ripples of hydraulic vane pump results from flow ripples due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a balanced type vane pump, cam ring curve is important factor to influence the flow ripples. Therefore, to reduce the flow ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring. and examined into the role of notch and radius reduction ratio.

  • PDF

A Study on the Role of Notch and Radius Reduction Ratio in the Balanced Type Vane Pump (베인 펌프에서 노치와 반경 감소비의 역활에 관한 연구)

  • 김기동;조명래;문호지;배홍용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.533-539
    • /
    • 1997
  • Pressure ripple of hydraulic vane pump results form flow ripple due to pump geometry and reverse flow through the discharge port due to compressibility of fluid and result in vibration and noise of connected hydraulic elements. In a ba;anced type vane pump, cam ring curve is important factor to influence the flow ripple. Therefore, to reduce the now ripple, it has been required that optimal selection of seal region by proper design of cam ring and each port position, and notches for preventing the excessive reverse flow. This paper has been performed analytical study of compression characteristics with major design parameter in side plate and cam ring, and examined into the role of notch and radius reduction ratio.

  • PDF

Effects of Operation Conditions on the Performance of Type II LiBr-H2O Absorption Heat Pump (제 2종 LiBr-H2O 흡수식 히트펌프의 운전 변수에 따른 성능 특성 수치 해석)

  • Yoon, Jun Seong;Kwon, Oh Kyung;Cha, Dong An;Bae, Kyung Jin;Kim, In Gwan;Kim, Min Soo;Park, Chan Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • This study carried out a numerical analysis of the effects of hot waste water supply on the performance of a Type II absorption heat pump. There are two types of hot waste water supply, regular series flow and reverse series flow. Also it investigated the interaction between each type of flow and heat exchange solutions. As the effectiveness of heat exchange solutions increase, the steam generation and (COP) increase as well. If the effectiveness of a heat exchange solution is lower than 0.566, the steam generation rate of the reverse flow is lower than that of the regular series flow. A high effectiveness of heat exchange solution is therefore required to make a larger amount of steam in reverse series flow than with ordinary series flow. The COP difference between the two types of flow decreases with the increasing effectiveness of the heat exchange solution. Thus, a reverse flow type absorption heat pump can match the high steam generation rate and COP of the ordinary flow type when a highly effective heat exchange solution is applied.

A Study on the Reverse Engineering and Performance Test in the Development of Screw Flowmeter (스크류유량계 개발에서의 역공학 및 성능평가에 관한 연구)

  • Hwang, Jong-Dae;Jung, Jong-Yoon;Lee, Sang-Ryul;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.24-30
    • /
    • 2005
  • This research presents a modeling and a manufacturing method of screw flow meter. This paper introduces the efficient design and manufacturing method of screw type flow meter using reverse engineering and test technology. The methods introduced this paper utilize the reverse engineering that is increasing accuracy of modeling and manufacturing of reverse model. And then it can be used in performance test with hydraulic test equipment. Hence this can be used in the basic document for development of the quite accurate flowmeter.

  • PDF

Fracture Behavior of the Cut Surface of a Flat Panel Glass according to Vibration Input (진동 인가에 따른 평판 유리 절단면의 파괴거동)

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Kim, Gi-Man;Kweon, Hyun-Kyu;Jeon, Jae-Mock;Rho, Young-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.51-56
    • /
    • 2005
  • This research presents a modeling and a manufacturing method of screw flow meter. This paper introduces the efficient design and manufacturing method of screw type flow meter using reverse engineering and test technology. The methods introduced this paper utilize the reverse engineering that is increasing accuracy of modeling and manufacturing of reverse model. And then it can be used in performance test with hydraulic test equipment. Hence this can be used in the basic document for development of the quite accurate flowmeter.

  • PDF

Diesel Engine Intake Port Analysis Using Reverse-engineering Technique (리버스 엔지니어링을 통한 디젤엔진 흡기포트의 성능 비교)

  • Kim, Chang-Su;Park, Sung-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this paper, we built a three-dimensional model by applying reverse engineering techniques on targeting the intake port of 2900cc class diesel engine before that three-dimensional design technique is applied. The performance of the intake port is predicted and analysed using the computational flow analysis. Flow Coefficient and Swirl Ratio have been analyzed for two intake port models. One is the intake port for the diesel engine with plunger-type fuel system, and the other is for the diesel engine with CRDI fuel system. Computational result shows that the Flow Coefficient of the intake port with CRDI fuel system is increased upto 10 percentage compared with that with plunger-type. Also, the intake port with plunger-type has high Swirl Ratio at high valve lift, and the intake port with CRDI fuel system has high Swirl Ratio at relatively low valve lift. It is believed that because of high performance of the fuel injector, the intake port with CRDI fuel system is designed for more air amount and not much swirl flow at high valve lift. However, high swirl flow is required at low valve lift for initial fuel and air mixing. The result of this study may be useful for the re-manufacturing industry of automotive parts.

Study on the Development and Performance Test of Screw Flowmeter using Reverse Engineering (역공학 기술을 이용한 스크류 유량계 개발 및 성능평가에 관한 연구)

  • Kim, Hyeong-Il;Hwang, Jong-Dae;Jung, Yoon-Gyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.601-606
    • /
    • 2005
  • This research presents a modeling and a manufacturing method of screw flow meter. This paper introduces the efficient design and manufacturing method of screw type flow meter using reverse engineering and test technology. The methods introduced this paper utilize the reverse engineering that is increasing accuracy of modeling and manufacturing of reverse model. And then it can be used in performance test with hydraulic test equipment. Hence this can be used in the basic document for development of the quite accurate flowmeter.

  • PDF

In-Cylinder Compression Flow Characteristics According to Inlet Valve Angle (흡입 밸브 각도에 따른 압축 행정 중 실린더 내 유동 특성)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.77-83
    • /
    • 2006
  • A PIV(Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during compression stroke. Two engines, one is conventional DOHC 4 valve and the other is narrow valve angle, were used to compare real compression flow. The results show that the flow patterns are well arranged compared with intake flow and the basic tumble flow structures are maintained until end compression stage regardless of valve angle. Also the results show that the tumble motion is intensified by momentum conservation during compression in normal engine. In the normal engine, the bulk shape of flow pattern is "Y" type at the top of cylinder and reverse "Y" type at the bottom of cylinder and weak reverse flow exists at the top of cylinder along cylinder center line. Otherwise, the other engine's flow pattern changes from "Y" type to "T" type at the top of cylinder during compression.