• Title/Summary/Keyword: Reverse Simulation

Search Result 386, Processing Time 0.025 seconds

Design of optimal PID controller for the reverse osmosis using teacher-learner-based-optimization

  • Rathore, Natwar S.;Singh, V.P.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2018
  • In this contribution, the control of multivariable reverse osmosis (RO) desalination plant using proportional-integral-derivative (PID) controllers is presented. First, feed-forward compensators are designed using simplified decoupling method and then the PID controllers are tuned for flux (flow-rate) and conductivity (salinity). The tuning of PID controllers is accomplished by minimization of the integral of squared error (ISE). The ISEs are minimized using a recently proposed algorithm named as teacher-learner-based-optimization (TLBO). TLBO algorithm is used due to being simple and being free from algorithm-specific parameters. A comparative analysis is carried out to prove the supremacy of TLBO algorithm over other state-of-art algorithms like particle swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE). The simulation results and comparisons show that the purposed method performs better in terms of performance and can successfully be applied for tuning of PID controllers for RO desalination plants.

Modelling of a High Efficiency Refrigeration System with Heat Storage for Reverse Cycle Hot Gas Defrost

  • Ardiyansyah, Ardiyansyah;Choi, Kwang-Il;Oh, Jong-Taek;Oh, Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.175-181
    • /
    • 2007
  • A computer model of a high efficiency refrigeration system equipped with heat storage for reverse cycle-hot gas defrost (the stored heat is used during defrost cycle of the system) is presented. The model was developed based on both theoretical and empirical equations for the compressor, evaporator, condenser and the heat storage equipment. Simulations of the prototype system were carried out to investigate refrigeration system performance under various operating conditions during refrigeration cycles. The simulations of the evaporator during defrost cycles at 30 and $40^{\circ}C$ hot gas refrigerant temperature were also performed which resulted on shorter defrost time but only slight increase in defrost efficiency. These information on energy efficiency and the defrost time required are important in order to avoid excessive parasitic load and temperature rise of the refrigerated room.

Effect of gas hydrate process on energy saving for reverse osmosis process in seawater desalination plant (해수담수화플랜트에서 가스 하이드레이트 공정 도입을 통한 역삼투 공정의 에너지 절감 효과)

  • Kim, Suhan;Lim, Jun-Heok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.771-778
    • /
    • 2013
  • Gas hydrate (GH) process is a new desalination technology, where GH is a non- stoichiometric crystalline inclusion compounds formed by water and a number of gas molecules. Seawater GH is produced in a low temperature and a high pressure condition and they are separated from the concentrated seawater. The drawback of the GH process so far is that salt contents contained in its product does not meet the fresh water quality standard. This means that the GH process is not a standalone process for seawater desalination and it needs the help of other desalting process like reverse osmosis (RO). The objective of this study is to investigate the effect of GH process on energy saving for RO process in seawater desalination. The GH product water quality data, which were obtained from a literature, were used as input data for RO process simulation. The simulation results show that the energy saving effect by the GH process is in a range of 68 % to 81 %, which increases as the salt removal efficiency of the GH process increases. Boron (B) and total dissolved solids (TDS) concentrations of the final product of the hybrid process of GH and RO were also investigated through the RO process simulation to find relavant salt rejection efficiency of the GH process. In conclusion, the salt rejection efficiency of the GH process should exceed at least 78% in order to meet the product water quality standards and to increase the energy saving effect.

Efficient Performance Evaluation Method for IS-95 System (IS-95 시스템 역방향 채널에서의 효율적인 성능평가 기법)

  • 전재춘;고윤진;정미선;황인관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.345-352
    • /
    • 2002
  • In this paper, in order to evaluate the performance of IS-95 system reverse link in white gaussian noise and rayleigh fading environment, we suggest epochal proposal to improve computer run-time and its efficiency is verified in terms of the number of samples. MC(Monte Carlo) simulation is the most popular simulation technique lately, but MC simulation requires a number of samples at low bit error rate. Therefore, MC cannot avoid the limit of computer run-time. To alleviate these problems, we apply the suggested method called central moment technique to the reverse link of the IS-95 system and can obtain discrete probability mass functions from Nth order central moments of the less number of received signal samples than those required in MC. Continuous cumulative probability distribution function can be accurately estimated by using interpolation and the improvement effect for the number of samples is proven.

A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration (고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구)

  • 김장우;정진도;김은권
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

The Results Comparison of Measurement and Simulations in ISL(Integrated Schottky Logic) Gate (ISL 게이트에서 측정과 시뮬레이션의 결과 비교)

  • 이용재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.157-165
    • /
    • 2001
  • We analyzed the electrical characteristics of platinum silicide schottky junction to develope the voltage swing in Integrated Schottky Logic gates, and simulated the characteristics with the programs in this junctions. Simulation programs for analytic characteristics are the Medichi tool for device structure, Matlab for modeling and SUPREM V for fabrication process. The silicide junctions consist of PtSi and variable silicon substrate concentrations in ISL gates. Input parameters for simulation characteristics were the same conditions as process steps of the device farications process. The analitic electrical characteristics were the turn-on voltage, saturation current, ideality factor in forward bias, and has shown the results of breakdown voltage between actual characteristics and simulation characteristics in reverse bias. As a result, the forward turn-on voltage, reverse breakdown voltage, barrier height were decreased but saturation current and ideality factor were increased by substrates increased concentration variations.

  • PDF

High-Efficiency Dual-Buck Inverter Using Coupled Inductor (결합 인덕터를 이용한 효율적인 단상 듀얼-벅 인버터)

  • Yang, Min-Kwon;Kim, Yu-Jin;Cho, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.6
    • /
    • pp.396-405
    • /
    • 2019
  • Single-phase full-bridge inverters have shoot-through problems. Dead time is an essential way of solving these issues, but it distorts the output voltage and current. Dual-buck inverters are designed to eliminate the abovementioned problems. However, these inverters result in switching power loss and electromagnetic interference due to the diode reverse-recovery problem. Previous studies have suggested reducing the switching power loss from diode reverse-recovery, but their proposed methods have complex circuit configurations and high system costs. To alleviate the switching power loss from diode reverse-recovery, the current work proposes a dual-buck inverter with a coupled inductor. In the structure of the proposed inverter, the current flowing into the original diode is divided into a new diode. Therefore, the switching power loss is reduced, and the efficiency of the proposed inverter is improved. Simulation waveforms and experimental results for a 1.0 kW prototype inverter are discussed to verify the performance of the proposed inverter.

A Study on the Resistance Performance of Catamarans with Modified-Reverse Bow (반전형 선수부 형상을 가진 쌍동선 저항성능에 관한 연구)

  • Kim, Do-jung;Oh, Woo-jun;Kim, Jung-eun;Na, Hyun-ho;Choi, Hong-sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.923-929
    • /
    • 2018
  • In this study, we analyzed the resistance performance and running attitude of a catamaran by numerical analysis with a conventional bow, which is generally applied, and a reverse, protruding bow. The shape of the reverse bow was compared through numerical analysis and model tests. The reverse bow shape showed an improved wave pattern by shifting the generation position of the forward divergent wave to the aft in comparison with a conventional bow shape. This effect was found to be effective in determining resistance and stable running attitude. The hull resistance improved by about 2.95 %. The comparative numerical analysis and model test for the reverse bow shape completed in this study should be useful for future hull design application.

Managing the Reverse Extrapolation Model of Radar Threats Based Upon an Incremental Machine Learning Technique (점진적 기계학습 기반의 레이더 위협체 역추정 모델 생성 및 갱신)

  • Kim, Chulpyo;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.29-39
    • /
    • 2017
  • Various electronic warfare situations drive the need to develop an integrated electronic warfare simulator that can perform electronic warfare modeling and simulation on radar threats. In this paper, we analyze the components of a simulation system to reversely model the radar threats that emit electromagnetic signals based on the parameters of the electronic information, and propose a method to gradually maintain the reverse extrapolation model of RF threats. In the experiment, we will evaluate the effectiveness of the incremental model update and also assess the integration method of reverse extrapolation models. The individual model of RF threats are constructed by using decision tree, naive Bayesian classifier, artificial neural network, and clustering algorithms through Euclidean distance and cosine similarity measurement, respectively. Experimental results show that the accuracy of reverse extrapolation models improves, while the size of the threat sample increases. In addition, we use voting, weighted voting, and the Dempster-Shafer algorithm to integrate the results of the five different models of RF threats. As a result, the final decision of reverse extrapolation through the Dempster-Shafer algorithm shows the best performance in its accuracy.

A Study on Simulation Model for RAM Analysis of SWRO Plant (SWRO 플랜트의 RAM 분석을 위한 시뮬레이션 모델 연구)

  • Kim, Yong Soo;Park, Jungwon;Choi, Sukho;Kang, Jun-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.1-10
    • /
    • 2019
  • The Sea Water Reverse Osmosis (SWRO) plant should take into account the availability of the plant from the design stage for long-term and continuous fresh water production. As it occurs, it is necessary to establish a corrective maintenance plan and preventive maintenance plan to maintain availability. In the field of complex engineering structures such as seawater desalination plants, it is difficult to estimate the reliability or availability of the system in a mathematical way. This study develops RAM analysis framework and model, and proposes discrete event simulation model as a application sowtware specialized for seawater desalination plant. Considering the characteristics of the plant maintenance, in case of corrective maintenance, we propose a preventive maintenance policy that not only repairs or replaces a single-broken part, but also simultaneously maintains all accessible parts according to the level of overhaul. A case study was conducted to estimate the availability of the system based on the field data of the seawater desalination plant in Korea and Saudi Arabia. The result was close to the expected availability of the plant.