• Title/Summary/Keyword: Retroviruses

Search Result 54, Processing Time 0.02 seconds

Mechanism of Human Endogenous Retrovirus (HERV) in Inflammatory Response (인간 내생 레트로바이러스(Human Endogenous Retrovirus, HERV)의 염증반응 조절 기작)

  • Ko, Eun-Ji;Cha, Hee-Jae
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.771-777
    • /
    • 2021
  • Human endogenous retroviruses (HERVs) were inserted into the human genome millions of years ago but they are currently inactive and non-infectious due to recombinations, deletions, and mutations after insertion into the host genome. Nonetheless, recent studies have shown that HERV-derived elements are actually involved in physiological phenomena and certain diseases including cancers. Among the various physiological phenomena related to HERV-derived elements, it is necessary to focus on inflammatory response. HERV-derived elements have been reported to be directly involved in various inflammatory diseases, including autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, amyotrophic lateral sclerosis, and Sjogren's syndrome. As a mechanism for regulating inflammation through HERV-derived elements, the possibility that HERV-derived elements may cause nonspecific innate immune processes and that HERV-derived RNA or proteins may cause selective signaling mechanisms through specific receptors can be considered. However, the mechanism through which HERV-derived elements regulate inflammatory response, such as how silent HERV elements are activated in inflammatory response and what factors and signaling mechanisms are involved in HERV-derived elements, have not been identified to date, making it difficult to study the onset of HERV-related inflammatory disease. In this review, we introduce HERV-related autoimmune diseases and propose the mechanisms of HERV-derived elements at the molecular level of HERV in inflammatory response.

Avian leukosis virus subgroup J and reticuloendotheliosis virus coinfection induced TRIM62 regulation of the actin cytoskeleton

  • Li, Ling;Zhuang, Pingping;Cheng, Ziqiang;Yang, Jie;Bi, Jianmin;Wang, Guihua
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.49.1-49.14
    • /
    • 2020
  • Background: Coinfection with avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) is common in chickens, and the molecular mechanism of the synergistic pathogenic effects of the coinfection is not clear. Exosomes have been identified as new players in the pathogenesis of retroviruses. The different functions of exosomes depend on their cargo components. Objectives: The aim of this study was to investigate the function of co-regulation differentially expressed proteins in exosomes on coinfection of ALV-J and REV. Methods: Here, viral replication in CEF cells infected with ALV-J, REV or both was detected by immunofluorescence microscopy. Then, we analyzed the exosomes isolated from supernatants of chicken embryo fibroblast (CEF) cells single infected and coinfected with ALV-J and REV by mass spectrometry. KEGG pathway enrichment analyzed the co-regulation differentially expressed proteins in exosomes. Next, we silenced and overexpressed tripartite motif containing 62 (TRIM62) to evaluate the effects of TRIM62 on viral replication and the expression levels of NCK-association proteins 1 (NCKAP1) and actin-related 2/3 complex subunit 5 (ARPC5) determined by quantitative reverse transcription polymerase chain reaction. Results: The results showed that coinfection of ALV-J and REV promoted the replication of each other. Thirty proteins, including TRIM62, NCK-association proteins 1 (NCKAP1, also known as Nap125), and Arp2/3-5, ARPC5, were identified. NCKAP1 and ARPC5 were involved in the actin cytoskeleton pathway. TRIM62 negatively regulated viral replication and that the inhibition of REV was more significant than that on ALV-J in CEF cells coinfected with TRIM62. In addition, TRIM62 decreased the expression of NCKAP1 and increased the expression of ARPC5 in coinfected CEF cells. Conclusions: Collectively, our results indicated that coinfection with ALV-J and REV competitively promoted each other's replication, the actin cytoskeleton played an important role in the coinfection mechanism, and TRIM62 regulated the actin cytoskeleton.

The Infectivity of Recombinant Porcine Endogenous Retrovirus (PERV-A/C) Is Modulated by Membrane-Proximal Cytoplasmic Domain of PERV-C Envelope Tail (C형 돼지 내인성 레트로바이러스(PERV)의 C-말단 외막당단백질에 의한 재조합 PERV-A/C의 감염력 조절)

  • Kim, Sae-Ro-Mi;Park, Sang-Min;Lee, Kyu-Jun;Lee, Yong-Jin;Bae, Eun-Hye;Park, Sung-Han;Lim, Ji-Hyun;Jung, Yong-Tae
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • Xenotransplantation of pig organs is complicated by the existence of polytropic replication-competent porcine endogenous retroviruses (PERV) capable of infecting human cells. Two classes of infectious human-tropic replication-competent PERVs (PERV-A and PERV-B) and one class of ecotropic PERV-C are known. The potential for recombination between ecotropic PERV-C and human-tropic PERVs adds another level of infectious risk. A recombinant PERV-A/C (PERV-A14/220) virus is 500-fold more infectious than PERV-A. Two determinants of this high infectivity was identified; one was isoleucine-to-valine substitution at position 140 in RBD (receptor binding domain), and the other lies within the PRR (proline rich region) of the envelope protein. To examine whether the effects of the cytoplasmic tail of the PERV-C Env on fusogenesity also influences infectivity, we constructed a pseudotype retroviral vectors containing MoMLV core protein and PERV envelopes. Pseudotyping experiments with the PERV envelope glycoproteins indicated that recombinant PERV-A/C virus is 10-fold more infectious than PERV-A by lacZ staining. This result supports the suggestion that viral transduction of PERV-A/C is enhanced by a membrane-proximal cytoplasmic amphiphilic ${\alpha}$-helix in PERV-C Env tail.

Construction of a Fluorescently Labeled Infectious R Peptide-Less Moloney MLV Molecular Clone for Analysis of Syncytium (합포체 분석을 위해 R 펩타이드가 결여된 형광 표지 Moloney 마우스레트로바이러스 Molecular Clone 제조)

  • Lee, Yong-Jin;Park, Jin-Woo;Lee, Kyu-Jun;Bae, Eun-Hye;Park, Sung-Han;Lim, Ji-Hyun;Kim, Sae-Ro-Mi;Jung, Yong-Tae
    • Korean Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.246-250
    • /
    • 2009
  • Retroviruses enter host cells by membrane fusion between the viral Env proteins on the virus membrane and a virus receptor on the cellular membrane. The envelope protein of the ecotropic Moloney murine leukemia virus is synthesized as a gp85 precursor and is proteolytically cleaved into an extracellular surface unit (SU) and the transmembrane protein (TM). The cytoplasmic tail (16 amino acid; R peptide) of the TM protein is further cleaved by the viral protease during virion maturation. Unlike the wild type Env protrin bearing the R peptide, R peptide-truncated Envelope induces syncytia in susceptible cells. To understand the mechanism of R peptidetruncated Env in syncytium formation, R peptide-truncated Env expressing full-length molecular clone containing EGFP in PRR (proline rich region) of Env was constructed. This molecular clone induced syncytia in transfected NIH3T3 cells, fluorescence was detected in the cytoplasm and at the plasma membrane, while the nuclei did not stain and appeared black by fluorescence microscopy. Interestingly, virions with truncated envelope produced from transfected NIH3T3 cells induced syncytia in NIH3T3 cells, but fluorescence was not detected in the same infected cells. It is believed that cell-free viruses direct the fusion of neighboring cells without infection. Our data suggests that use of EGFP-tagged envelope for monitoring syncytium is a sensitive and convenient method. We also found that virion incorporated the R peptide-truncated Env is able to induce the formation of syncytia by fusion from without.