• Title/Summary/Keyword: Retinal degeneration model

Search Result 15, Processing Time 0.027 seconds

Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model

  • Park, Un-Chul;Cho, Myung-Soo;Park, Jung-Hyun;Kim, Sang-Jin;Ku, Seung-Yup;Choi, Young-Min;Moon, Shin-Yong;Yu, Hyeong-Gon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.216-221
    • /
    • 2011
  • Objective: To differentiate the human embryonic stem cells (hESCs) into the retinal pigment epithelium (RPE) in the defined culture condition and determine its therapeutic potential for the treatment of retinal degenerative diseases. Methods: The embryoid bodies were formed from hESCs and attached on the matrigel coated culture dishes. The neural structures consisting neural precursors were selected and expanded to form rosette structures. The mechanically isolated neural rosettes were differentiated into pigmented cells in the media comprised of N2 and B27. Expression profiles of markers related to RPE development were analyzed by reverse transcription-polymerase chain reaction and immunostaining. Dissociated putative RPE cells ($10^5$ cells/5 ${\mu}L$) were transplanted into the subretinal space of rat retinal degeneration model induced by intravenous sodium iodate injection. Animals were sacrificed at 1, 2, and 4 weeks after transplantation, and immnohistochemistry study was performed to verify the survival of the transplanted cells. Results: The putative RPE cells derived from hESC showed characteristics of the human RPE cells morphologically and expressed molecular markers and associated with RPE fate. Grafted RPE cells were found to survive in the subretinal space up to 4 weeks after transplantation, and the expression of RPE markers was confirmed with immunohistochemistry. Conclusion: Transplanted RPE cells derived from hESC in the defined culture condition successfully survived and migrated within subretinal space of rat retinal degeneration model. These results support the feasibility of the hESC derived RPE cells for cell-based therapies for retinal degenerative disease.

Electrophysiological and Histologic Evaluation of the Time Course of Retinal Degeneration in the rd10 Mouse Model of Retinitis Pigmentosa

  • Jae, Seol A;Ahn, Kun No;Kim, Ji Young;Seo, Je Hoon;Kim, Hyong Kyu;Goo, Yong Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • Among several animal models of retinitis pigmentosa (RP), the more recently developed rd10 mouse with later onset and slower rate of retinal degeneration than rd1 mouse is a more suitable model for testing therapeutic modalities. We therefore investigated the time course of retinal degeneration in rd10 mice before adopting this model in our interventional studies. Electroretinogram (ERG) recordings were carried out in postnatal weeks (PW) 3~5 rd10 (n=23) and wild-type (wt) mice (n=26). We compared the amplitude and implicit time of the b-wave of ERG records from wt and rd10 mice. Our results showed that b-wave amplitudes in rd10 mice were significantly lower and the implicit time of b-waves in rd10 mice were also significantly slower than that in wt mice ($20{\sim}160{\mu}V$ vs. $350{\sim}480{\mu}V$; 55~75 ms vs. 100~150 ms: p<0.001) through PW3 to PW5. The most drastic changes in ERG amplitudes and latencies were observed during PW3 to PW4. In multichannel recording of rd10 retina in PW2 to PW4.5, we found no significant difference in mean spike frequency, but the frequency of power spectral peak of local field potential at PW3 and PW3.5 is significantly different among other age groups (p<0.05). Histologic examination of rd10 retinae showed significant decrease in thickness of the outer nuclear layer at PW3. TUNEL positive cells were most frequently observed at PW3. From these data, we confirm that in the rd10 mouse, the most precipitous retinal degeneration occurs between PW3~PW4 and that photoreceptor degeneration is complete by PW5.

Transcriptome Analysis of Long-Term Exposure to Blue Light in Retinal Pigment Epithelial Cells

  • Jin, Hong Lan;Jeong, Kwang Won
    • Biomolecules & Therapeutics
    • /
    • v.30 no.3
    • /
    • pp.291-297
    • /
    • 2022
  • Dry age-related macular degeneration (AMD) is a type of progressive blindness that is primarily due to dysfunction and the loss of retinal pigment epithelium (RPE). The accumulation of N-retinylidene-N-retinylethanolamine (A2E), a by-product of the visual cycle, causes RPE and photoreceptor degeneration that impairs vision. Genes associated with dry AMD have been identified using a blue light model of A2E accumulation in the retinal pigment epithelium and transcriptomic studies of retinal tissue from patients with AMD. However, dry macular degeneration progresses slowly, and current approaches cannot reveal changes in gene transcription according to stages of AMD progression. Thus, they are limited in terms of identifying genes responsible for pathogenesis. Here, we created a model of long-term exposure to identify temporally-dependent changes in gene expression induced in human retinal pigment epithelial cells (ARPE-19) exposed to blue light and a non-cytotoxic dose of A2E for 120 days. We identified stage-specific genes at 40, 100, and 120 days, respectively. The expression of genes corresponding to epithelial-mesenchymal transition (EMT) during the early stage, glycolysis and angiogenesis during the middle stage, and apoptosis and inflammation pathways during the late stage was significantly altered by A2E and blue light. Changes in the expression of genes at the late stages of the EMT were similar to those found in human eyes with late-stage AMD. Our results provide further insight into the pathogenesis of dry AMD induced by blue light and a novel model in vitro with which relevant genes can be identified in the future.

Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice

  • Goo, Yong-Sook;Ahn, Kun-No;Song, Yeong-Jun;Ahn, Su-Heok;Han, Seung-Kee;Ryu, Sang-Baek;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.415-422
    • /
    • 2011
  • Previously, we reported that besides retinal ganglion cell (RGC) spike, there is ~10 Hz oscillatory rhythmic activity in local field potential (LFP) in retinal degeneration model, rd1 mice. The more recently identified rd10 mice have a later onset and slower rate of photoreceptor degeneration than the rd1 mice, providing more therapeutic potential. In this study, before adapting rd10 mice as a new animal model for our electrical stimulation study, we investigated electrical characteristics of rd10 mice. From the raw waveform of recording using $8{\times}8$ microelectrode array (MEA) from in vitro-whole mount retina, RGC spikes and LFP were isolated by using different filter setting. Fourier transform was performed for detection of frequency of bursting RGC spikes and oscillatory field potential (OFP). In rd1 mice, ~10 Hz rhythmic burst of spontaneous RGC spikes is always phase-locked with the OFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, there is a strong phase-locking tendency between the spectral peak of bursting RGC spikes (~5 Hz) and the first peak of OFP (~5 Hz) across different age groups. But this phase-locking property is not robust as in rd1 retina, but maintains for a few seconds. Since rd1 and rd10 retina show phase-locking property at different frequency (~10 Hz vs. ~5 Hz), we expect different response patterns to electrical stimulus between rd1 and rd10 retina. Therefore, to extract optimal stimulation parameters in rd10 retina, first we might define selection criteria for responding rd10 ganglion cells to electrical stimulus.

Multiple consecutive-biphasic pulse stimulation improves spatially localized firing of retinal ganglion cells in the degenerate retina

  • Jungryul Ahn;Yongseok Yoo;Yong Sook Goo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.6
    • /
    • pp.541-553
    • /
    • 2023
  • Retinal prostheses have shown some clinical success in restoring vision in patients with retinitis pigmentosa. However, the post-implantation visual acuity does not exceed that of legal blindness. The reason for the poor visual acuity might be that (1) degenerate retinal ganglion cells (RGCs) are less responsive to electrical stimulation than normal RGCs, and (2) electrically-evoked RGC spikes show a more widespread not focal response. The single-biphasic pulse electrical stimulation, commonly used in artificial vision, has limitations in addressing these issues. In this study, we propose the benefit of multiple consecutive-biphasic pulse stimulation. We used C57BL/6J mice and C3H/HeJ (rd1) mice for the normal retina and retinal degeneration model. An 8 × 8 multi-electrode array was used to record electrically-evoked RGC spikes. We compared RGC responses when increasing the amplitude of a single biphasic pulse versus increasing the number of consecutive biphasic pulses at the same stimulus charge. Increasing the amplitude of a single biphasic pulse induced more RGC spike firing while the spatial resolution of RGC populations decreased. For multiple consecutive-biphasic pulse stimulation, RGC firing increased as the number of pulses increased, and the spatial resolution of RGC populations was well preserved even up to 5 pulses. Multiple consecutive-biphasic pulse stimulation using two or three pulses in degenerate retinas induced as much RGC spike firing as in normal retinas. These findings suggest that the newly proposed multiple consecutive-biphasic pulse stimulation can improve the visual acuity in prosthesis-implanted patients.

The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells

  • Wonseon Ryu;Chul-Woo Park;Junghoon Kim;Hyungwoo Lee;Hyewon Chung
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.420-429
    • /
    • 2023
  • Age-related macular degeneration (AMD) is one of the leading causes of blindness in elderly individuals. However, the currently used intravitreal injections of anti-vascular endothelial growth factor are invasive, and repetitive injections are also accompanied by a risk of intraocular infection. The pathogenic mechanism of AMD is still not completely understood, but a multifactorial mechanism that combines genetic predisposition and environmental factors, including cellular senescence, has been suggested. Cellular senescence refers to the accumulation of cells that stop dividing due to the presence of free radicals and DNA damage. Characteristics of senescent cells include nuclear hypertrophy, increased levels of cell cycle inhibitors such as p16 and p21, and resistance to apoptosis. Senolytic drugs remove senescent cells by targeting the main characteristics of these cells. One of the senolytic drugs, ABT-263, which inhibits the antiapoptotic functions of Bcl-2 and Bcl-xL, may be a new treatment for AMD patients because it targets senescent retinal pigment epithelium (RPE) cells. We proved that it selectively kills doxorubicin (Dox)-induced senescent ARPE-19 cells by activating apoptosis. By removing senescent cells, the expression of inflammatory cytokines was reduced, and the proliferation of the remaining cells was increased. When ABT-263 was orally administered to the mouse model of senescent RPE cells induced by Dox, we confirmed that senescent RPE cells were selectively removed and retinal degeneration was alleviated. Therefore, we suggest that ABT-263, which removes senescent RPE cells through its senolytic effect, has the potential to be the first orally administered senolytic drug for the treatment of AMD.

PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress

  • Jang, Ki-Hong;Hwang, Yeseong;Kim, Eunhee
    • Molecules and Cells
    • /
    • v.43 no.7
    • /
    • pp.632-644
    • /
    • 2020
  • The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.

Development and Degeneration of Retinal Ganglion Cell Axons in Xenopus tropicalis

  • Choi, Boyoon;Kim, Hyeyoung;Jang, Jungim;Park, Sihyeon;Jung, Hosung
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.846-854
    • /
    • 2022
  • Neurons make long-distance connections via their axons, and the accuracy and stability of these connections are crucial for brain function. Research using various animal models showed that the molecular and cellular mechanisms underlying the assembly and maintenance of neuronal circuitry are highly conserved in vertebrates. Therefore, to gain a deeper understanding of brain development and maintenance, an efficient vertebrate model is required, where the axons of a defined neuronal cell type can be genetically manipulated and selectively visualized in vivo. Placental mammals pose an experimental challenge, as time-consuming breeding of genetically modified animals is required due to their in utero development. Xenopus laevis, the most commonly used amphibian model, offers comparative advantages, since their embryos ex utero during which embryological manipulations can be performed. However, the tetraploidy of the X. laevis genome makes them not ideal for genetic studies. Here, we use Xenopus tropicalis, a diploid amphibian species, to visualize axonal pathfinding and degeneration of a single central nervous system neuronal cell type, the retinal ganglion cell (RGC). First, we show that RGC axons follow the developmental trajectory previously described in X. laevis with a slightly different timeline. Second, we demonstrate that co-electroporation of DNA and/or oligonucleotides enables the visualization of gene function-altered RGC axons in an intact brain. Finally, using this method, we show that the axon-autonomous, Sarm1-dependent axon destruction program operates in X. tropicalis. Taken together, the present study demonstrates that the visual system of X. tropicalis is a highly efficient model to identify new molecular mechanisms underlying axon guidance and survival.

Analysis of Neuronal Activities of Retinal Ganglion Cells of Degenerated Retina Evoked by Electrical Pulse Stimulation (전기자극펄스에 대한 변성망막 신경절세포의 응답특성 분석)

  • Ryu, Sang-Baek;Lee, Jong-Seung;Ye, Jang-Hee;Goo, Yong-Sook;Kim, Chi-Hyun;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • For the reliable transmission of meaningful visual information using prosthetic electrical stimulation, it is required to develop an effective stimulation strategy for the generation of electrical pulse trains based on input visual information. The characteristics of neuronal activities of retinal ganglion cells (RGCs) evoked by electrical stimulation should be understood for this purpose. In this study, for the development of an optimal stimulation strategy for visual prosthesis, we analyzed the neuronal responses of RGCs in rd1 mouse, photoreceptor-degenerated retina of animal model of retinal diseases (retinitis pigmentosa). Based on the in-vitro model of epiretinal prosthesis which consists of planar multielectrode array (MEA) and retinal patch, we recorded and analyzed multiunit RGC activities evoked by amplitude-modulated electrical pulse trains. Two modes of responses were observed. Short-latency responses occurring at 3 ms after the stimulation were estimated to be from direct stimulation of RGCs. Long-latency responses were also observed mainly at 2 - 100 ms after stimulation and showed rhythmic firing with same frequency as the oscillatory background field potential. The long-latency responses could be modulated by pulse amplitude and duration. From the results, we expect that optimal stimulation conditions such as pulse amplitude and pulse duration can be determined for the successful transmission of visual information by electrical stimulation.

Activation of Lysosomal Function Ameliorates Amyloid-β-Induced Tight Junction Disruption in the Retinal Pigment Epithelium

  • Dong Hyun Jo;Su Hyun Lee;Minsol Jeon;Chang Sik Cho;Da-Eun Kim;Hyunkyung Kim;Jeong Hun Kim
    • Molecules and Cells
    • /
    • v.46 no.11
    • /
    • pp.675-687
    • /
    • 2023
  • Accumulation of pathogenic amyloid-β disrupts the tight junction of retinal pigment epithelium (RPE), one of its senescence-like structural alterations. In the clearance of amyloid-β, the autophagy-lysosome pathway plays the crucial role. In this context, mammalian target of rapamycin (mTOR) inhibits the process of autophagy and lysosomal degradation, acting as a potential therapeutic target for age-associated disorders. However, efficacy of targeting mTOR to treat age-related macular degeneration remains largely elusive. Here, we validated the therapeutic efficacy of the mTOR inhibitors, Torin and PP242, in clearing amyloid-β by inducing the autophagy-lysosome pathway in a mouse model with pathogenic amyloid-β with tight junction disruption of RPE, which is evident in dry age-related macular degeneration. High concentration of amyloid-β oligomers induced autophagy-lysosome pathway impairment accompanied by the accumulation of p62 and decreased lysosomal activity in RPE cells. However, Torin and PP242 treatment restored the lysosomal activity via activation of LAMP2 and facilitated the clearance of amyloid-β in vitro and in vivo. Furthermore, clearance of amyloid-β by Torin and PP242 ameliorated the tight junction disruption of RPE in vivo. Overall, our findings suggest mTOR inhibition as a new therapeutic strategy for the restoration of tight junctions in age-related macular degeneration.