DOI QR코드

DOI QR Code

전기자극펄스에 대한 변성망막 신경절세포의 응답특성 분석

Analysis of Neuronal Activities of Retinal Ganglion Cells of Degenerated Retina Evoked by Electrical Pulse Stimulation

  • 류상백 (연세대학교 보건과학대학 의공학과) ;
  • 이종승 (연세대학교 보건과학대학 의공학과) ;
  • 예장희 (충북대학교 의과대학 생리학교실) ;
  • 구용숙 (충북대학교 의과대학 생리학교실) ;
  • 김지현 (연세대학교 보건과학대학 의공학과) ;
  • 김경환 (연세대학교 보건과학대학 의공학과)
  • Ryu, Sang-Baek (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Lee, Jong-Seung (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Ye, Jang-Hee (Department of Physiology, Chungbuk National University Medical School) ;
  • Goo, Yong-Sook (Department of Physiology, Chungbuk National University Medical School) ;
  • Kim, Chi-Hyun (Department of Biomedical Engineering, College of Health Science, Yonsei University) ;
  • Kim, Kyung-Hwan (Department of Biomedical Engineering, College of Health Science, Yonsei University)
  • 발행 : 2009.08.30

초록

For the reliable transmission of meaningful visual information using prosthetic electrical stimulation, it is required to develop an effective stimulation strategy for the generation of electrical pulse trains based on input visual information. The characteristics of neuronal activities of retinal ganglion cells (RGCs) evoked by electrical stimulation should be understood for this purpose. In this study, for the development of an optimal stimulation strategy for visual prosthesis, we analyzed the neuronal responses of RGCs in rd1 mouse, photoreceptor-degenerated retina of animal model of retinal diseases (retinitis pigmentosa). Based on the in-vitro model of epiretinal prosthesis which consists of planar multielectrode array (MEA) and retinal patch, we recorded and analyzed multiunit RGC activities evoked by amplitude-modulated electrical pulse trains. Two modes of responses were observed. Short-latency responses occurring at 3 ms after the stimulation were estimated to be from direct stimulation of RGCs. Long-latency responses were also observed mainly at 2 - 100 ms after stimulation and showed rhythmic firing with same frequency as the oscillatory background field potential. The long-latency responses could be modulated by pulse amplitude and duration. From the results, we expect that optimal stimulation conditions such as pulse amplitude and pulse duration can be determined for the successful transmission of visual information by electrical stimulation.

키워드

참고문헌

  1. A. Santos, M. S. Humayun, E. de Juan, R. J. Greenburg, M. J. Marsh, I. B. Klock, and A. H. Milam, 'Preservation of the inner retinal in retinitis pigmentosa: A morphological analysis,' Arch. Ophthalmol., vol. 115, pp.511-515, 1997
  2. E. Zrenner, 'Will retinal implants restore vision?' Science, vol. 295, pp. 1022-1025, 2002 https://doi.org/10.1126/science.1067996
  3. L. B. Merabet, J. F. Rizzo, A. Amedi, D. C. Somers, and A. Pascual-Leone, 'What blindness can tell us about seeing again: merging neuroplasticity and neuroprosthesis,' Nat. Rev. Neurosci., vol. 6, pp. 71-77, 2005 https://doi.org/10.1038/nrn1586
  4. M. S. Humayun, E. de Juan. Jr., G. Dangnelie, R. J. Greenberg, R. H. Prospst, and D. H. Phillips, 'Visual perception elicited by electrical stimulation of retina in blind humans,' Arch. Ophthalmol., vol. 114, pp. 40-46, 1996
  5. M. S. Humayun, J. D. Weiland, G. Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. V. Boemel, G. Dagnelie, and E. de Juan. Jr., 'Visual perception in a blind subject with a chronic microelectronic retinal prosthesis,' Vision Res., vol. 43, pp. 2573-2581, 2003 https://doi.org/10.1016/S0042-6989(03)00457-7
  6. J. M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu, and Y. S. Yu, 'Biocompatibility of polyimide microelectrode array for retinal stimulation,' Mater. Sci. Eng., C, vol. 24, pp. 185-189, 2004 https://doi.org/10.1016/j.msec.2003.09.019
  7. L. Hesse, T. Schanze, M. Wilms, and M. Eger, 'Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat,' Graef. Arch. Clin. Exp. Ophthal., vol. 238, pp. 840-845, 2000 https://doi.org/10.1007/s004170000197
  8. S. B. Ryu, J. H. Ye, J. S. Lee, Y. S. Goo, and K. H. Kim, 'Characterization of retinal ganglion cell activities evoked by temporally patterned electrical stimulation for the development of stimulus encoding strategies for retinal implants,' Brain Res., In Press. 2009 https://doi.org/10.1016/j.brainres.2009.03.064
  9. J. H. Ye, and Y. S. Goo, 'The slow wave component of retinal activity in rd/rd mice recorded with a multi-electrode array,' Physiol. Meas., vol. 28, pp. 1079-1088, 2007 https://doi.org/10.1088/0967-3334/28/9/009
  10. S. F. Stasheff, 'Emergence of sustained hyperactivity and temporary preservation of OFF responses in ganglion cells of the retinal degeneration(rd1) mouse,' J. Neurophysiol., vol. 99, pp. 1408-1421, 2008 https://doi.org/10.1152/jn.00144.2007
  11. A. Stett, W. Barth, S. Weiss, H. Haemmerle, and E. Zrenner, 'multisite stimulation of the isolated chicken retina,' Vision Res., vol. 40, pp. 1785-1795, 2000 https://doi.org/10.1016/S0042-6989(00)00005-5
  12. C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A. M. Litke, and E. J. Chichilnisky, 'Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays,' J. Neurophysiol., vol. 95, pp. 3311-3327, 2006 https://doi.org/10.1152/jn.01168.2005
  13. T. M. O'Hearn, S. R. Sadda, J. D. Weiland, M. Maia, E. Margalit, and M. S. Humayun, 'Electrical stimulation in normal and retinal degeneration (rd1) isolated mouse retina,' Vision Res., vol. 46, pp. 3198-3204. 2006 https://doi.org/10.1016/j.visres.2006.03.031
  14. P.C. Loizou, 'Mimicking the human ear,' Signal Processing Magazine, IEEE, vol. 15, pp. 101-130, 1998 https://doi.org/10.1109/79.708543
  15. S. I. Fried, H. A. Hsueh, and F. S. Werblin, 'A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation,' J. Neurophysiol., vol. 95, pp. 970-978, 2006 https://doi.org/10.1152/jn.00849.2005