• 제목/요약/키워드: Reticulated Vitreous Carbon(RVC)

검색결과 4건 처리시간 0.014초

Horseradish Peroxidase가 고정화된 다공성 탄소 전극을 이용한 페놀의 전기화학적 분해 (Electrochemical Degradation of Phenol by Using Reticulated Vitreous Carbon Immobilized Horseradish Peroxidase)

  • 조승희;연경호;김가영;심준목;문승현
    • 대한환경공학회지
    • /
    • 제27권12호
    • /
    • pp.1263-1269
    • /
    • 2005
  • 용액 상에서 페놀류에 대해 95%의 분해특성을 지니는 동식물세포유래의 효소(horseradish peroxidase, HRP, EC 1.11.1.7)를 다공성 탄소 전극에 고정화시키고 이를 전기화학 반응기에 도입하여 전극반응에 의해 연속적으로 발생되는 과산화수소를 이용하여 페놀의 분해를 수행하였다. FT-IR 분석을 통해 다공성탄소전극 표면에 HRP의 아민기와 펩티드 결합을 위한 카르복실기가 생성되었음을 확인하였고 가교제(coupling agent)로 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride(EDC)를 이용하여 공유결합으로 고정화시켰다. 또한 HRP를 활성화 시켜 페놀을 처리하기 위해 전해질로 사용된 인산염 완충용액의 농도($10{\sim}200$ mM)와 pH($5.0{\sim}8.0$), 외부 산소 주입량($10{\sim}50$ mL/min)및 potentiostat/galvanosta에 의한 외부 공급전압($-0.2{\sim}-0.8$ volt, vs. Ag/AgCl)의 조건을 달리하며 RVC 전극 표면에서 발생되는 과산화수소 농도 및 전류효율을 고려하여 최적 자체 발생조건을 결정하였다. HRP가 고정화된 RVC 전극은 초기 고정화된 HRP 활성에 대해 4주 동안 89%의 상대적 효소 활성도(relatively enzymatic activity)를 지니는 안정한 전극임을 확인하였으며 실험실 스케일의 연속식 전기화학 반응기에 도입되어 최적 과산화수소의 발생조건에서 86%의 분해 효율을 보였다.

Polypyrrole-Coated Reticulated Vitreous Carbon as Anode in Microbial Fuel Cell for Higher Energy Output

  • Yuan, Yong;Kim, Sung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.168-172
    • /
    • 2008
  • A microbial fuel cell is a noble green technology generating electricity from biomass and is expected to find applications in a real world. One of main hurdles to this purpose is the low power density. In this study, we constructed a prototype microbial fuel cell using Proteus vulgaris to study the effect of various reaction conditions on the performance. Main focus has been made on the modification of the anode with electropolymerized polypyrrole (Ppy). A dramatic power enhancement was resulted from the Ppy deposition onto the reticulated vitreous carbon (RVC) electrode. Our obtained maximum power density of 1.2 mW cm-3 is the highest value among the reported ones for the similar system. Further power enhancement was possible by increasing the ionic strength of the solution to decrease internal resistance of the cell. Other variables such as the deposition time, kinds of mediators, and amount of bacteria have also been examined.

연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성 (Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell)

  • 김정구;정연구;박송인
    • 유기물자원화
    • /
    • 제18권1호
    • /
    • pp.57-65
    • /
    • 2010
  • 양성자 교환막 미생물연료전지(PEM-MFC)의 경우 양극의 표면적을 기준으로 유기물 제거능력을 산출하면 유기물 부하에 관계없이 $3.0gCOD/m^2$ 수준으로 나타났다. 또 안정적인 전압이 관찰된 시기의 쿨롱 효율은 22.4~23.4 %로 높지 않은 수준이었다. 양성자 교환막은 양성자뿐만 아니라 초산도 통과시키는 것으로 확인되었다. 양성자 교환막을 사용하지 않은 상향류식 미생물연료전지(ML-MFC)의 경우 다공성 RVC 전극을 사용한 관계로 전극의 외부면적당 유기물 제거능력은 $9.3{\sim}10.1gCOD/m^2{\cdot}d$로 나타났다. 이는 양성자 교환막을 사용한 경우에 비하여 3배 정도 높은 수준이다. 그러나 RVC 양극의 비표면적 차이에 따른 유기물 제거 능력 차이는 크지 않았다. ML-MFC의 경우 전기 발생이 안정적이지 못하였으며, 쿨롱 효율도 3.6~3.7 %로 매우 낮은 수준이었다. 전기 발생량이 안정적이지 못한 것은 음극에 성장한 미생물의 영향으로 판단된다. 이를 해결하기 위해 음극부의 공기주입량을 증가시키면 일시적으로 전기 발생이 증가하였으나 오래 지속되지 못하였다.

표면부유 공기양극 미생물연료전지에서 유량 및 전극 면적비에 따른 전력생산 특성 (Electricity generation from surface floating air cathode microbial fuel cell according to the wastewater flow-rate and the ratio of cathode surface area to anode surface area)

  • 유규선;송영채;우정희;정재우;이채영
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.591-596
    • /
    • 2011
  • Surface floating air cathode microbial fuel cell (MFC) having horizontal flow was developed for the application of MFC technology. RVC (Reticulated vitreous carbon) coated with anyline was used as anode electrode and carbon cloth coated with Pt (5.0 g Pt/$m^2$, GDE LT250EW, E-TEK) was used as cathode electrode. As results of continuous operation with changing the flow rate from 4.3 mL/min to 9.5 mL/min, maximum power density of 4.5 W/$m^3$ was acquired at 5.4 mL/min, which was at 0.35 m/hr of flow velocity under anode electrode. When the ratio of cathode surface area to anode surface area($A_c/A_a$) was changed to 1.0, 0.5, and 0.25, the maximum power density of 2.7 W/$m^3$ was shown at the ratio of 1.0. As the ratio decreased from 1.0 to 0.25, the power density also decreased, which is caused by increasing the internal resistance resulted from reducing the surface area to contact with oxygen. Actually, internal resistances of the ratio of 1.0, 0.5, and 0.25 were 63.75${\Omega}$, 142.18${\Omega}$, and 206.12${\Omega}$, respectively.