• Title/Summary/Keyword: Retention mechanism

Search Result 177, Processing Time 0.026 seconds

IPS Earth Retention System (IPS(Innovative Prestressed Wale System) 흙막이 공법의 개발)

  • Park, Jong-Sik;Kim, Nak-Kyung;Han, Man-Yop;Kim, Jong-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.293-300
    • /
    • 2004
  • A new earth retention system(Innovative Prestressed Wale System) has been developed and introduced. IPR earth retention system provides an economical benefit, construction easiness, good performance and safety. IPS is a prestressed wale by using a steel wire, which provides a high stiffness to resist the earth pressure. In order to investigate the applicability and the safety of new IPS system, field tests were performed. A new IPS system applied in a trench excavation performed successfully. Basic principles and mechanism of IPS system and measure performance were presented and discussed.

  • PDF

Thermodynamic Properties of the Solute Transfer from the Aqueous Acetonitrile Mobile Phase to the Stationary Phase Monitored by HPLC

  • Jeong, Won Jo;Kim, Ji Yeon;Gu, Yun Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.105-109
    • /
    • 2000
  • High-performance liquid chromatography is suitable for getting thermodynamic information about solute-solvent interactions. We used a squalane impregnated $C_{18}$ phase as a presumably bulk-like stationary phase to secure a simple partition mechanism for solute retention in reversed phase liquid chromatographic system. We measured retention data of some selected solutes (benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, phenol, benzylalcohol, phenethylalcohol, benzylacetone, acetophenone, benzonitrile, benzylcyanide) at 25, 30, 35, 40, 45, and 50 $^{\circ}C$ in 30/70, 40/60, 50/50, 60/40 and 70/30 (v/v%) acetonitrile/water eluents. The van't Hoff plots were nicely linear, thus we calculated dependable thermodynamic values such as enthalpies and entropies of solute transfer from the mobile phase to the stationary phase based on more than four retention measurements on different days (or weeks). We found that the cavity formation effect was the major factor in solute distribution between the mobile and stationary phases in the system studied here. Our data were com-pared with some relevant literature data.

Prediction of Micro-Bubble Releasing Concentration with the Retention Time of a Micro-Bubble Generating Pump (미세기포 발생펌프 내 체류시간에 따른 미세기포의 발생 농도 예측)

  • Ambrosia, Matthew Stanley;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.25 no.6
    • /
    • pp.829-837
    • /
    • 2016
  • The mechanism of micro-bubble generation with a pump is not clarified yet, so the design of water treatment systems with a micro-bubble generating pump is based on trial and error methods. This study tried to explain clearly quantitative relationships of experimental micro-bubble concentration ($C_{air}$) of continuous operation tests with a micro-bubble generating pump and theoretical air solubility. Operation parameters for the tests were discharge pressure ($P_g$), water ($Q_{w0}$) and air ($q_0$) flow rates, orifice diameter ($D_o$), and retention time (t). The experimental micro-bubble concentrations ($C_{air}$) at 4.8 atm of discharge pressure ($P_g$) were in the range of 21.04 to 25.29 mL/L. When the retention time (t) by changing the pipe line length ($L_p$) increased from 1.22 to 6.77s, the experimental micro-bubble concentrations ($C_{air}$) increased from 25.86 to 30.78 mL air/L water linearly. The dissolved and dispersed micro-bubble concentrations ($C_{air}$) are approximately 4 times more than the theoretical air solubility.

A Study on the Retention Behavior of Co(II)-Dithiocarbamate Chelates in Reversed Phase-High Performance Liquid Chromatography (역상 액체크로마토그래피에서 Co(II)-Dithiocarbamate 킬레이트의 머무름 거동에 관한 연구)

  • Lee, Won;Kim, Eun-Kyung;Ann, Hye-Sook;Lee, Jung-Han
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.387-396
    • /
    • 1999
  • The retention behavior of Cot(II)-dithiocarbamate(DTC) chelates in reversed phase high performance liquid chromatography was investigated. Enthalpy and entropy of chelates transfer from the mobile phase to the stationary phase were calculated from retention data using van't Hoff plots. The dependence of In k' on enthalpy was decreased with increasing organic solvent ratio on the mobile phase. The compensation temperatures(${\beta}$) calculated from the slope of $-{\Delta}H^0$ vs In k' were in the range of 756.3-888.5 K. From these results. it was found that the retention mechanism of DTC chelates was invariant under the various temperatures and was largely affected by the solvophobie effect. Liniear relationship between S index and log k' in emprical retention equation, $log\;k^{\prime}=log\;{k_w}^{\prime}-S_{\varphi}$ showed that S index was influenced mainly by the interaction between DTC chelates and the mobile phase.

  • PDF

Development of Innovative Prestressed Support Earth Retention System (IPS 흙막이 공법의 개발)

  • Kim, Nak-Kyung;Park, Jong-Sik;Han, Man-Yop;Kim, Moon-Young;Kim, Sung-Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.107-113
    • /
    • 2004
  • A new innovative prestressed support (IPS) earth retention system has been developed and introduced. The IPS is a wale system prestressed by steel wires. The IPS consists of wale, wires, and H-beam support. The IPS provides a high flexural stiffness to resist the bending by earth pressures. The IPS earth retention system provides a larger spacing of support, economical benefit, construction easiness, good performance, and safety control. This paper explains basic principles and mechanism of new IPS system and presents a design method of IPS earth retention system. In order to investigate applicability and safety of new IPS system, field tests were performed in a trench excavation. The new IPS system applied in a trench excavation was performed successfully. The measured performances of IPS system were presented and discussed.

Soil water retention and hysteresis behaviors of different clayey soils at high suctions

  • Li, Ze;Gao, You;Yu, Haihao;Chen, Bo;Wang, Long
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.373-382
    • /
    • 2022
  • Unsaturated soil at high suctions is widespread. Many civil engineering projects are related to the hydro-mechanical behavior of unsaturated soils at high suctions, particularly in arid and semiarid areas. To investigate water retention behaviors of nine clayey soils (one is classified as fat clay and the others are classified as lean clay according to the unified soil classification system), the high suction (3.29-286.7 MPa) was imposed on the specimens at zero net stress by the vapor equilibrium technique. In this paper, the effect of void ratio on the water retention behavior at high suction was discussed in detail. Validation data showed that soil types, i.e., different mineralogical compositions, are critical in the soil water retention behavior at a high suction range. Second, the hysteresis behavior at a high suction range is mainly related to the clay content and the specific surface area. And the mechanism of water retention and hysteresis behavior at high suctions was discussed. Moreover, the maximum suction is not a unique value, and it is crucial to determine the maximum suction value accurately, especially for the shear strength prediction at high suctions. If the soil consists of hydrophilic minerals such as montmorillonite and illite, the maximum suction will be lower than 106 kPa. Finally, using the area of hysteresis to quantify the degree of hysteresis at a high suction range is proposed. There was a good correlation between the area of hydraulic hysteresis and the specific surface area.

Complete denture fabrication of edentulous patient with severe alveolar bone resorption using suction mechanism: A case report (치조제 흡수가 심한 무치악 환자에서 흡착원리를 이용한 총의치 수복 증례)

  • Kim, Hyun-Ah;Yun, Kwi-Dug;Jo, Yu-Jin;Yang, Hongso;Park, Sang-Won;Park, Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.130-136
    • /
    • 2020
  • Fabrication of complete denture with suction mechanism was introduced to enhance the retention and stability of denture by sealing around the denture border by forming negative pressure on the inner side of denture base during functional movement such as swallowing or masticating. Mandibular suction dentures reduce denture dislodging force during opening by taking preliminary impression without pressure on retromolar pad area in rest position. In this case, fabrication of complete denture using suction mechanism for an edentulous patient with severe alveolar bone resorption allowed us to clinically enhance retention and stability of denture and improve satisfaction of patient.

Study in Mechanism of Hydrogen Retention by C-SiC Films with IR

  • Huang, N.K.;Xiong, Q.;Liu, Y.G.;Yang, B.;Wang, D.Z.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.46-50
    • /
    • 2002
  • C-SiC films with different content of SiC on stainless steel substrate were prepared with ion beam mixing. It was found that hydrogen concentrations in C-SiC coatings was higher than that in stainless steel after H$\^$+/ ion implantation followed by thermal annealing. Infrared (IR) transmission measurement was used to study the mechanism of hydrogen retention by C-SiC films. The vibrational features in the range between 400 and 3200 cm$\^$-1/ in IR transmission spectra show the Si-CH$_3$, Si-CH$_2$, Si-H, CH$_2$and CH$_3$bonds, which are responsible for retaining hydrogen.

  • PDF

Reversed-Phase Ion-Interaction Chromatography of Aromatic Sulfonic and Carboxylic Acids (방향족 슬폰산 및 카르복시산의 역상 이온-상호작용 크로마토그래피)

  • Kang Sam-Woo;Oh Hae-Beom;Lee Seung-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.113-121
    • /
    • 1988
  • The retention mechanism and separation of various aromatic sulfonic and carboxylic acids on reversed-phase liquid chromatographic column were studied in the mobile phase containing dodecyltrimethylammonium bromide (DTAB). The retention mechanism was found to be followed the ion-interaction model where the DTAB occupies a primary layer at the stationary phase while the sample anions and other co-anions in the system compete for forming the secondary layer. The capacity factors of samples were influenced by the several factors such as pH, concentration of various organic solvents, co-anions in the mobile phase and functional groups in sample molecules. Some mixtures of organic samples were attempted to separate under optimum condition.

  • PDF

Optimum Condition of HPLC by HCI Program (HCI 프로그램을 이용한 HPLC의 최적화 조건)

  • Jin, Chun Hua;Lee, Ju Weon;Row, Kyung Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.555-562
    • /
    • 2006
  • Recently, liquid chromatography (LC) has been used more frequently to separate drugs and natural substances. Especially, to selection of the solutes from the products, the operation condition of analytical chromatography should be necessarily determined. So accurate computer modeling and simulation of chromatographic performances has become a necessary part of the development and design of processes. High-Purity Separation Lab. Inha University developed the resulting HCI software for the purpose of the optimization of chromatographic performances. The HCI program was utilized to find the optimum operating condition more accurately and rapidly, reducing the number of many possible experiments. The elution profiles were calculated by the plate theory based on the three retention mechanism of capacity factor.