• 제목/요약/키워드: Restricted zeros

검색결과 7건 처리시간 0.023초

On Zeros of Polynomials with Restricted Coefficients

  • RASOOL, TAWHEEDA;AHMAD, IRSHAD;LIMAN, AB
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.807-816
    • /
    • 2015
  • Let $P(z)={\limits\sum_{j=0}^{n}}a_jz^j$ be a polynomial of degree n and Re $a_j={\alpha}_j$, Im $a_j=B_j$. In this paper, we have obtained a zero-free region for polynomials in terms of ${\alpha}_j$ and ${\beta}_j$ and also obtain the bound for number of zeros that can lie in a prescribed region.

SOME BOUNDS FOR ZEROS OF A POLYNOMIAL WITH RESTRICTED COEFFICIENTS

  • Mahnaz Shafi Chishti;Vipin Kumar Tyagi;Mohammad Ibrahim Mir
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제31권1호
    • /
    • pp.49-56
    • /
    • 2024
  • For a Polynomial P(z) = Σnj=0 ajzj with aj ≥ aj-1, a0 > 0 (j = 1, 2, ..., n), a classical result of Enestrom-Kakeya says that all the zeros of P(z) lie in |z| ≤ 1. This result was generalized by A. Joyal et al. [3] where they relaxed the non-negative condition on the coefficents. This result was further generalized by Dewan and Bidkham [9] by relaxing the monotonicity of the coefficients. In this paper, we use some techniques to obtain some more generalizations of the results [3], [8], [9].

BERNSTEIN-TYPE INEQUALITIES PRESERVED BY MODIFIED SMIRNOV OPERATOR

  • Shah, Wali Mohammad;Fatima, Bhat Ishrat Ul
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.305-313
    • /
    • 2022
  • In this paper we consider a modified version of Smirnov operator and obtain some Bernstein-type inequalities preserved by this operator. In particular, we prove some results which in turn provide the compact generalizations of some well-known inequalities for polynomials.

INEQUALITIES FOR THE DERIVATIVE OF POLYNOMIALS WITH RESTRICTED ZEROS

  • Rather, N.A.;Dar, Ishfaq;Iqbal, A.
    • Korean Journal of Mathematics
    • /
    • 제28권4호
    • /
    • pp.931-942
    • /
    • 2020
  • For a polynomial $P(z)={\sum_{{\nu}=0}^{n}}\;a_{\nu}z^{\nu}$ of degree n having all its zeros in |z| ≤ k, k ≥ 1, it was shown by Rather and Dar [13] that ${\max_{{\mid}z{\mid}=1}}{\mid}P^{\prime}(z){\mid}{\geq}{\frac{1}{1+k^n}}\(n+{\frac{k^n{\mid}a_n{\mid}-{\mid}a_0{\mid}}{k^n{\mid}a_n{\mid}+{\mid}a_0{\mid}}}\){\max_{{\mid}z{\mid}=1}}{\mid}P(z){\mid}$. In this paper, we shall obtain some sharp estimates, which not only refine the above inequality but also generalize some well known Turán-type inequalities.

INEQUALITIES FOR COMPLEX POLYNOMIAL WITH RESTRICTED ZEROS

  • Istayan Das;Robinson Soraisam;Mayanglambam Singhajit Singh;Nirmal Kumar Singha;Barchand Chanam
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권4호
    • /
    • pp.943-956
    • /
    • 2023
  • Let p(z) be a polynomial of degree n and for any complex number 𝛽, let D𝛽p(z) = np(z) + (𝛽 - z)p'(z) denote the polar derivative of the polynomial with respect to 𝛽. In this paper, we consider the class of polynomial $$p(z)=(z-z_0)^s \left(a_0+\sum\limits_{{\nu}=0}^{n-s}a_{\nu}z^{\nu}\right)$$ of degree n having a zero of order s at z0, |z0| < 1 and the remaining n - s zeros are outside |z| < k, k ≥ 1 and establish upper bound estimates for the maximum of |D𝛽p(z)| as well as |p(Rz) - p(rz)|, R ≥ r ≥ 1 on the unit disk.

A TURÁN-TYPE INEQUALITY FOR ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

  • Shah, Wali Mohammad;Singh, Sooraj
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.199-203
    • /
    • 2022
  • Let f(z) be an entire function of exponential type τ such that ║f║ = 1. Also suppose, in addition, that f(z) ≠ 0 for ℑz > 0 and that $h_f(\frac{\pi}{2})=0$. Then, it was proved by Gardner and Govil [Proc. Amer. Math. Soc., 123(1995), 2757-2761] that for y = ℑz ≤ 0 $${\parallel}D_{\zeta}[f]{\parallel}{\leq}\frac{\tau}{2}({\mid}{\zeta}{\mid}+1)$$, where Dζ[f] is referred to as polar derivative of entire function f(z) with respect to ζ. In this paper, we prove an inequality in the opposite direction and thereby obtain some known inequalities concerning polynomials and entire functions of exponential type.

제로팽창 모형을 이용한 보험데이터 분석 (A Zero-Inated Model for Insurance Data)

  • 최종후;고인미;전수영
    • 응용통계연구
    • /
    • 제24권3호
    • /
    • pp.485-494
    • /
    • 2011
  • 계수(Count) 데이터는 반응변수가 음이 아닌 계수로, 자동차 사고건수나 지진이 일어난 횟수, 보험처리 발생건수 등을 말한다. 이런 경우에는 주로 포아송 회귀모형을 사용하지만, 평균과 분산이 동일한 경우만 이용될 수 있다는 제약이 따른다. 실증적 자료에서는 그룹 간 이질성으로 인해 분산이 매우 큰 과대산포(Overdispersion) 현상을 볼 수 있는데, 이를 무시할 경우 회귀계수나 표준오차가 편의되는 현상이 발생한다. 보험은 보장성 개념이 강하기 때문에 실제로 보험처리가 발생하지 않는 경우가 많아, 보험처리 건수에 '0'값이 있을 수 있다. 본 논문에서는 '0'값이 많은 자료의 분석을 위해 제로팽창 모형(Zero-Inflated Model)을 고려하고, 여러 모형들의 효율성을 실증자료를 통하여 비교하였다. 실증 자료 분석 결과, 과대산포와 제로팽창 현상이 존재하는 자료에서 제로팽창 음이항 모형(Zero-Inflated Negative Binomial Regression Model)이 가장 효율적인 모형임을 보여 주었다.