J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN(Print) 1226-0657
https://doi.org/10.7468 /jksmeb.2024.31.1.49 ISSN(Online) 2287-6081
Volume 31, Number 1 (February 2024), Pages 49-56

SOME BOUNDS FOR ZEROS OF A POLYNOMIAL
WITH RESTRICTED COEFFICIENTS

MAHNAZ SHAFI CHISHTI®*, VIPIN KUMAR TYAGIP
AND MOHAMMAD IBRAHIM MIR ¢

n

ABSTRACT. For a Polynomial P(z) = 37 a;z) with a; > aj—1, a0 > 0 (j =
1,2,...,n), a classical result of Enestrom-Kakeya says that all the zeros of P(z) lie
in |z| < 1. This result was generalized by A. Joyal et al. [3] where they relaxed
the non-negative condition on the coefficents. This result was further generalized
by Dewan and Bidkham [9] by relaxing the monotonicity of the coefficients. In this
paper, we use some techniques to obtain some more generalizations of the results
3], 8], [9].

1. INTRODUCTION

The fundamental theorem of Algebra gives the guarantee for existence of as many
zeros of a polynomial as its degree in the complex plane. But the impossibility of
solving algebraically a polynomial equation of degree greater than 4 is an important
problem in the history of Mathematics. Thus Mathematicians studied to identify
the regions in a complex plane containing some or all the zeros of a given polynomial.
The first result concerning the location of zeros of a polynomial was probably due
to Gauss [1]. However, Enestrom and Kakeya independently put condition on the
coefficients of a polynomial and proved the following elegant result [1] which is well

known in the theory of distribution of the zeros of polynomials.

Theorem 1.1. If P(2) = an2" +an_12"" ' +... + a1z + ag is a polynomial of degree
n such that a, > ap—1 > ... > a1 > ag > 0, then all the zeros of P(z) lie in |z| < 1.

This result is limited in scope as the hypothesis is very restrictive and the result

does not hold for the polynomials with non-negative coefficients. There are many
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extensions and generalizations of Enestrom-Kakeya theorem in literature [7, 4, 6].
In this direction, Joyal et al. [3] proved the following result for polynomials with

coeflicients monotone but not positive.

Theorem 1.2. Let P(2) = ap2" +an_12"" ' +...4+a12+ag be a polynomial of degree

n such that ap, > apn—1 > ... > a1 > ag, then all the zeros of P(z) lie in the disk
’z‘ < an*ao+|a0|_

lan]
For a more general class of polynomials, Aziz and Zargar [8] proved the following

generalization of Theorem 1.2.

Theorem 1.3. If P(2) = an2" +an_12"" ' +... + a1z + ag is a polynomial of degree
n such that for some k > 1, ka, > an—1 > ... > a1 > ag, then P(z) has all its zeros
in |z +k—1| < kan—aotlaol

lan]

However, in this direction Dewan and Bidkham [9] obtained an interesting result
by relaxing the condition of monotonicity of the coefficients. Infact, they proved the

following result.

Theorem 1.4. If P(2) = ap2" +an_12"" ' +... + a1z + ag is a polynomial of degree
n such that a, < ap—1 < ... <ay > ax_1 > ...>ay > ag, then P(z) has all its zeros
in|z| < ﬁ {2a) — an — ag + |aol}-

The aim of this paper is to prove some generalizations of Theorem 1.3 and The-

orem 1.4, which are also extensions of Theorem 1.1.

2. MAIN THEOREMS

n .
Theorem 2.1. Let P(z) = > ajz’ be a polynomial of degree n such that for some
=0
k1 > 1, ko > 1, kiay > kaapn—1> an—2 > ... > a1 > ag. Then all the zeros of P(z) lie

m

(kl — 1)an — (kg — 1) Ap—1 < L

Z+ =
an |an]

{klan - (kQ — 1) ap—1 — Qg + ‘CL()’} .
Remark 2.1. Taking k; = k, k2 = 1 in Theorem 2.1, we obtain Theorem 1.3.

n .

Theorem 2.2. Let P(z) = ) ajz’ be a polynomial of degree n such that for some
7=0

k1 >1, ko > 1, k1an < kgap1 < .. <ax>ayx1>..2a1>2a (0<A<n—1).
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Then all the zeros of P(z) lie in
+ (kl — 1) (079 —a(k'Q — 1) Ap—1

L { 2ay — kiap, + (]CQ - 1)an_1 —aop }
= |anl +laol '
Remark 2.2. By taking k1, ko = 1, we obtain Theorem 1.4 and by taking k; = k,
k2 = 1 we obtain a result due to Shah and Liman [2] and for A = 0 we get Theorem
1.3.

n .

Theorem 2.3. Let P(z) = ) ajz’ be a polynomial of degree n such that for some
5=0

kx> 1, A=1,2,...n, kian > kaan_1 > ... > kx_10p_xy2 > kxGp_r41 = Gp_) >

.. > a1 > ag. Then all the zeros of P(z) lie in
k:lan — (kg — 1) ]an_1|
ki —1a, — (ko —1)an,— 1 A
sy o=z Vot o L 4o S5 (= 1)lansi] - ao
=2

an |an|

+ |aol

Remark 2.3. Theorem 2.3 is a generalization of a result due to Shah and Liman [2]
for k1 = k and k; = 1; j = 2,..., \. Theorem 2.3 is also an extended generalization

of a result due to Joyal et al. [3].

PROOF OF MAIN THEOREM

Proof of Theorem 2.1. Consider a polynomial

F(z) = (1-2)P(2)
B —an 2" 4 (ap — an_1) 2" + (a1 — an_2) 2" 1+ ...
+ (a1 — ap) z + agp
—an2" Tt —{(k1 — 1) an — (kg — 1) an_1} 2"
— n (kran — koan_1) 2" + (apn—1 — an_2) 2" 14+
e+ (a1 — ag) 2+ ag
which implies
|2|" lanz + (k1 — 1)an — (ko — 1)a,—1]
F > .
‘ <Z)| - |: —](klan—kgan,l)z”—i—...—{—ad

Let |z| > 1 so that &; < 1, which implies

||

1 -
|27

<1;5=0,1,2,...,n—1, therefore
we have
lanz + (k1 — Day — (k2 — 1)ay—1|
[F(2)] = [2]" |kran — kaan—1] + [an-1 — an—a| fj+
_{ ~-+|a1—(10"z|%+|a0]‘2# }
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lanz + (k1 — V)an — (k2 — 1)ap—1|
|Z‘n o ’klan - kQCLn—l‘ + ‘an—l - an—2’ +
e \al — a0| + ‘a()’

= |2|"[Janz + (k1 — Dan — (k2 — 1)an—1|
— kia, — (kg — 1)an_1 —ag + |a0” >0,

Y

if
(k1 — Dap, — (k2 — Dap—1

an,

1

|an|

‘Z + > {klan — (kg — 1)an_1 —ap + ‘a()’}

Therefore, it follows that the zeros of F(z) with |z| > 1 lie in

ki —1ay, — (ks —1)an_ 1
(k1 )a a(z ) an—1 < —A{kiap — (kg — 1) ap—1 — ap + |ag|} -

zZ+ =
|an|

But the zeros of F(z) having modulus less than or equal to 1 already lie in this
region and since all the zeros of F'(z) are also the zeros of P(z), it follows that all
the zeros of P(z) lie in the disk

ki—1)a, — (ko — 1) a,_ 1
‘w“ o= o2 Dnt] < L e — (k2 = 1) ot a0 -+ ool
This completes the proof of Theorem 2.1. ]

Example 2.1. Theorem 2.1 gives better result than that obtained by Theorem 1.3
and Theorem 1.4. Consider the polynomial P(z) = 27 + 325 4+ 32° + 22% 4 223 +
222 4+ 22+ 1 of degree 7. By taking k; = 5, ko = 1 in Theorem 1.3 and Theorem 1.4,
the zeros of P(z) lie in |z 4+ 4| < 5. However, by taking k1 = 5, k2 = 3 in Theorem
2.1, all the zeros of P(z) lie in the circle |z 4+ 1] < 2.

Proof of Theorem 2.2. Consider a polynomial F(z) = (1 — z)P(z), then

F(z) = (1-2)P(z)
—ap 2" 4 (ay — 1) 2"+ (a1 — an2) 2" L+ . 4 (a1 —ag) 2
+ap
—an 2" —{(k1 — D an — (ks — 1) an_1} 2" + (k1an — kaan_1) 2"
+ {(an-1— an—2) 2" '+ ...+ (a1 —ag) 2+ ap}
—2"anz+ (k1 — 1) ap, — (k2 — 1) ap—1] + (kran, — koan—1) 2"
B {+ (@n_1 — an_2) 2" 1+ ...+ (a1 —ag) z + ao}
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Let |z| > 1, then | P < 1, therefore — < 1; j =0,1,2,...,n — 1. Hence, we have

IIJ

i \anz + (kl — 1) Ay — (kg — 1) an_1]
r - n |k1an - k2an71| + |an71 - an72’ ﬁ +
| (Z)’ = |Z’ _ +|(I)\+1_a)\| |n1>\ T +|a)\_a)\ 1‘ |'r:Ll—>\ + .
L +‘(11—a0| = =T +’a0|
i lanz + (k1 — 1) ap, — (k:g —1)ap-1]
kla — kga _1‘ + ]a _1—a _2| + ...
F(z > Zn ‘ n n n n
[F) = 2l - + |axt1 — ay| + |lax —ay—1| + ...
i + |a1 — ao| + |ao|
— lanz + (k1 — 1) an — (ko — 1) ap—1]
—{2a) — k1an + (k2 — 1)ap—1 — ap + |aol|}
> 0,
if
ki —1Da, — (ko —1)a,—
‘Z—I— ( ! ) n ( 2 ) n—l 7{2&)\ klan+(k2—1)an_1—ao—i—\ao]}.
an |an|

Hence all the zeros of F'(z) with |z| > 1 lie in

< i 2a>\ — ]ﬁan
= lan| | +(k2 = Dan—1—ao+lao| |-

Since all the zeros of F'(z) with |z| < 1 already lie in this region and since all the
zeros of F'(z) are also the zeros of P(z), it follows that all the zeros of P(z) lie in

(k‘l — 1) Ay — (k‘g — 1) Ap—1
Gn

-+

the region
ki —1Da, — (ko —1)an—
‘Z—I— ( ! ) n ( 2 ) n-l < {2&)\ klan—l—(kg—l)an_l—ao—i—\ao]}.
an \an\
This completes the proof of Theorem 2.2. O

Example 2.2. Theorem 2.2 gives a better result than Theorem 1.4. Consider a
polynomial P(z) = 2204 32° + 724 4923 + 622 4+ 32+ 1 of degree 6, then by applying
Theorem 1.4, it follows that the zeros of P(z) lie in |z| < 8. However, by applying
Theorem 2.2 for k1 = 3 and kg = 2, the zeros of P(z) lie in }z + %‘ < %.

Proof of Theorem 2.3. Consider a polynomial

F(z) = (1—-2)P(2)
= —a, 2" 4+ {(an — an_1) 2"+ ... + (a1 — ag) z + ag}
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(an_an 1)+(an 1 — Qn— 2)1+-~-

= an2n+1 + 2" +(an A2 — Ap— )\+1) oy vy (an A1 — an /\)Z)\l 1
—&-(an,)\ — an,,\,l) + .+ (a1 — ao) —=1 + ao
= —ap2"t!
I {— (kl — 1) an + (k?g — 1) ap—1 + (klan — kgan_l)} T
+{— (k2 = 1) an—1 + (ks — 1) an—2 + (k2an—1 — ksan—2)}1
—(kx—1 = 1) ap—xg2 + (kx — 1) apn_x41 1
n +...+ ( —
te + (Ex—1an-x+2 — kxap—x41) A2
+{— (kx — 1) an-xt1 + (kxtn-x41 — @n_x)} 7
+ {(an-x — an—r—1) & + ... + (a1 — ag) ==t L fao
[ —ap 2"+ 2~ (k= 1) a, + (k2 — 1) an_1} + (kran — kaan_1) ]
+{— (k2 — 1) an—1 + (ks — 1) an—a + (kaan—1 — k3an—2)} 2+
_ T (ka1 — 1) ap—xq2 + (kx — 1) ap_x41 L
+ (kx—1@n—x+2 — kxn—x+1) A2
{=(kx—1)an- M1 + (kAGn-at1 — an— A)}le
+{(an-r — an-r-1) 5 + ... + (a1 —ag) = |
Let |z| > 1, then |71‘ < 1 and hence B |J <1;7=0,1,2,....,n — 1.
Therefore
[ lanz + (k— 1) ap — (k2 — 1) ap—1]
|k‘1an — kgan71| + (kﬁg — 1) |an,1| + (kﬁg — 1) |an,2|
+ |k:2an_1 — k‘gan_2| + ...+ (k‘>\_1 — 1) \a _)\+2|
F()| > |2|" "
Gz ™| + (kx = 1) |an—rs1] + [Fa—1an—ry2 — Exan—r+1]
+ (kx — 1) |an—x41| + [krxan—xt1 — an—y|
i +lan—x — ap_x—1| + ... + a1 — ag| + |ao|
i lanz + (k1 — 1) ap — (ko — 1) ap—1]
k — (kg —1 _
> |Z|n \ 10n ( 2 )|an 1|
+2 > (kj — 1) lan—xt1| — ao + |aol
I i=
> 0,
if
kiay, — (ko — 1) lap—1| +
Z+(k1—1)an—(k2—1)an_1 L )\ln (2 )|n1|
an lan| | +2 > (kj — 1) |an—xy1| — ao + |ao|
=2

Hence all the zeros of F(z) with |z| > 1 lie in
k:lan - (k?g - 1) |6Ln_1| +

A
+2 > (kj — 1) [an—rs1] — ao + |ao|
j=2

1
< —

|an|

(k‘l — 1) Ay — (k‘g — 1) Ap—1

Qn

‘z—k
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Since all the zeros of F'(z) with |z| < 1 already lie in this region and since all the

zeros of F'(z) are also the zeros of P(z), therefore it follows that all the zeros of the

polynomial P(z) lie in

k — (ko — 1) |lan—
+(k1—1)an—(k2—1)an_1 1 1dn (2 )’a 1‘+

- A
an = an| ] 2 Z%(kj‘—l)\aan+1\—'ao-%|ad
]:

3. CONCLUSION

The results obtained in this paper give better bounds for the zeros of a polynomial

as compared to the results available in literature.The applicability of our results

has been demonstrated by examples. These results can be further extended for

polynomials with Quaternionic variables and to other fields, hence has very good

scope for further research. Besides, the zero bounds of polynomial has applications

in various subjects like Algebraic Number Theory, Hilbert Space Theory, Computer

Science, Cryptography, Engineering etc.

—_
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