• Title/Summary/Keyword: Restoring force

Search Result 187, Processing Time 0.023 seconds

Force and Pose control for Anthropomorphic Robotic Hand with Redundancy (여유자유도를 가지는 인간형 로봇 손의 자세 및 힘 제어)

  • Yee, Gun Kyu;Kim, Yong Bum;Kim, Anna;Kang, Gitae;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.179-185
    • /
    • 2015
  • The versatility of a human hand is what the researchers eager to mimic. As one of the attempt, the redundant degree of freedom in the human hand is considered. However, in the force domain the redundant joint causes a control issue. To solve this problem, the force control method for a redundant robotic hand which is similar to the human is proposed. First, the redundancy of the human hand is analyzed. Then, to resolve the redundancy in force domain, the artificial minimum energy point is specified and the restoring force is used to control the configuration of the finger other than the force in a null space. Finally, the method is verified experimentally with a commercial robot hand, called Allegro Hand with a force/torque sensor.

The evaluation of maximum bite force in the occlusal rehabilitation of patient with Angle Class III malocclusion: a case report

  • Karakis, Duygu;Kaymak, Dilek;Dogan, Arife
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.364-368
    • /
    • 2013
  • The case report describes the occlusal rehabilitation of a male patient with Angle Class III malocclusion and its effect on maximum bite force. The main complaints of patient were masticatory difficulty and poor esthetic. The patient's expectations from the treatment were a good esthetic and function with a less invasive and relatively promptly way. Therefore, increasing of the occlusal vertical dimension (OVD) and then restoring the maxillary and mandibular teeth was chosen by the patient among the treatment options. At the beginning of treatment maximum bite force of patient was measured. Then an occlusal splint was provided to evaluate the adaptation of the patient to the altered OVD. Full mouth rehabilitation with metal ceramic restorations was made. After the completion of full mouth restoration, bite force measurement was repeated and patient exhibited increased maximum bite force. Full mouth restorative treatment in a patient with Class III malocclusion could be an effective treatment approach to resolve esthetic concern and to improve masticatory function related to maximum bite force.

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Analytical study of wind-rain-induced cable vibration : 2DOF model

  • Wang, L.Y.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.6 no.4
    • /
    • pp.291-306
    • /
    • 2003
  • Many investigations have been conducted to find out the reason behind wind-rain-induced cable vibration in cable-stayed bridges. A single-degree-of-freedom (SDOF) analytical model, which could capture main features of wind-rain-induced cable vibration, was recently presented by the writers. This paper extends the SDOF model to a 2DOF model by including the equation of motion of upper rivulet. The interaction between the upper rivulet and the cable is described in terms of nonlinear damping force, linear restoring force, and inertia force. The computed results using the 2DOF model are first compared with the results from simulated wind-rain tunnel tests, and the comparison is found satisfactory in general. The possible mechanisms of wind-rain-induced cable vibration are discussed and a parametric study is then conducted. Finally, the computed results using the 2DOF model are compared with those predicted by the SDOF model. The 2DOF model is found better than the SDOF model but the SDOF model is still acceptable for its simplicity.

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

MODEL ON THE DYNAMIC BEHAVIOR OF CONDUCTIVE FERROMAGNETIC MATERIAL WITH NEGLIGIBLE COERCIVITY

  • Kim, Dac-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.790-794
    • /
    • 1995
  • Differential equations governing dynamic behavior of toroid-shaped ferro-magnetic material having a small gap of uniform width were derived incorporating Maxwell equations of electromagnetic induction relevent to the system and Newtonian equation of motion. Once the external uniform magnetic field was applied within the material through dc-circuit around the toroid, gap begin to change which lead to the abrupt variation of field in the material and gap according to the differential equations already derived. Characteristics of current and electromotive force with respect to time in the circuit consisting of inductance and resistance in series could be predicted from numerical solutions of these equations. As current in the circuit increasesl, magnetic field in the material increases, thus, the gap starts to shrink due to increased attractive force between gap and elastic restoring force in the material. With an appropriate selection of elastic constant of toroidal ferromagnetic material and design of gap structure it is possible to obtain the specified in both linear and nonlinear magnetic characteristics, such as current dependent and independent inductance.

  • PDF

Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber (배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

Drag Force on Bubbles for Fluidic Self-Assembly (유체 자가-조립을 위한 버블 항력 연구)

  • Im, Hyeon-Seung;Lee, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • We developed a novel method of fluidic self-assembly to replace the conventional pick-and-place method. This method is cheaper and more effective than the previous method. For this research, we compared mathematical models with experimental results using the parameters of the drag force, the capillary force, and the restoring force for effective chip assembly, and the results for the alignment to the substrate. We obtained a 96.5% attach rate and $5^{\circ}$-misalignment to the substrate in a 500 ${\mu}m$ solder ball.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

Maximum Control Force for Sliding Mode Controller with Saturation Problem (포화현상을 고려한 슬라이딩 모드제어기의 최대제어력 산정)

  • 이상현;민경원;김홍진;이영철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Sliding mode control (SMC), which is one of active control algorithms showing remarkable control performance, requires the excessive control force for control of seismically excited civil structures. Therefore, controller saturation should be considered in design of SMC. In this study, a method for determining the maximum control force is developed in terms of the fraction of the lateral restoring force using a design response spectrum. Numerical analyses of MDOF structures with one or multiple control devices verify the effectiveness of the proposed method for the control of seismically excited civil structures with saturation problem.