• Title/Summary/Keyword: Restoring Force

Search Result 189, Processing Time 0.026 seconds

A Proof of Concept Investigation on a Pendular Power Take-Off System of Horizontal Wave Power Generator (수평파력 발전장치의 진자형 1차 에너지 추출 시스템에 대한 기초 모형실험 및 시뮬레이션)

  • Park, Yong-Kun;Lim, Chae Gyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.68-75
    • /
    • 2017
  • This paper presents the experimental and theoretical results of the dynamic responses of a pendular energy extractor in a two-dimensional wave channel. By adopting a wave maker with varying wave height and period, the dynamic responses of the pendular buoy were experimentally obtained. Furthermore, with the aid of the co-simulation of moving particle analysis and rigid dynamic analysis, the dynamic responses of the pendular system were evaluated. In order to validate the feasibility of the proposed wave power generator, the force tuning of the pendular system with restoring energy was carried out. The results provide proof of concept data for the development and design of a commercial model for horizontal wave power generators in the shoreline area.

Experimental study on the seismic performance of concrete filled steel tubular laced columns

  • Huang, Zhi;Jiang, Li-Zhong;Chen, Y. Frank;Luo, Yao;Zhou, Wang-Bao
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.719-731
    • /
    • 2018
  • Concrete filled steel tubular (CFST) laced columns have been widely used in high rise buildings in China. Compared to solid-web columns, this type of columns has a larger cross-section with less weight. In this paper, four concrete filled steel tubular laced columns consisting of 4 main steel-concrete tubes were tested under cyclic loading. Hysteresis and failure mechanisms were studied based on the results from the lateral cyclic loading tests. The influence of each design parameter on restoring forces was investigated, including axial compression ratio, slenderness ratio, and the size of lacing tubes. The test results show that all specimens fail in compression-bending-shear and/or compression-bending mode. Overall, the hysteresis curves appear in a full bow shape, indicating that the laced columns have a good seismic performance. The bearing capacity of the columns decreases with the increasing slenderness ratio, while increases with an increasing axial compression ratio. For the columns with a smaller axial compression ratio (< 0.3), their ductility is increased. Furthermore, with the increasing slenderness ratio, the yield displacement increases, the bending failure characteristic is more obvious, and the hysteretic loops become stouter. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Experimental and Numerical Study for Motion Reduction Design of Floating Wave Energy Converter (부유식 파력발전구조물의 운동 저감부 형상설계에 관한 수치 및 실험적 연구)

  • Park, Ji Yong;Nam, Bo Woo;Hong, Sa Young;Shin, Seung Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • The present study aims to design an optimized hull shape of a floating pendulum-type wave energy converter(WEC). The purpose of these structure is to improve the performance and stability of the WEC by reducing its motion under operating and survival wave conditions. In this study, motion reduction structures, like restoring and dampling plates were installed on a floating pendulum WEC that has been the subject of previous studies. Restoring plates were installed to increase the restoring force and shift the natural period to a shorter period. Damping plates were installed to shift the natural period to a longer period by increasing the added mass. The effects of the structures were then analyzed under different incident wave conditions. The design parameters for the motion reduction structures were size, shape, and installed position. The wave-induced motion characteristics and performance of the floating pendulum WEC were also investigated numerically. Based on the simulation results, we are able to optimize the motion reduction structure of the WEC, thus improving its efficiency and durability.

Factors Affecting Community Resilience in the Process of Environmental Pollution Purification: Focusing on the Restoration of Soil Pollution around the Janghang Smelter (환경오염 정화 과정에 나타난 지역공동체 회복력 영향 요인: 장항제련소 토양오염 복구를 중심으로)

  • Lee, Jin-Wook
    • Journal of the Korean Regional Science Association
    • /
    • v.37 no.4
    • /
    • pp.61-74
    • /
    • 2021
  • The objective of this study was to evaluate the community's capacity and hindrance factors affecting the community's activities by exploring the process of restoring the community's environmental pollution. This study examined the community activities related to the restoration of pollution that occurred at the former Janghang smelter in Seocheon-gun. The results of this study showed that leaders, cooperative resources, and the media were elements positively influencing the recovery of the community. The starting point that became the driving force for community activities was the presence of a leader who had a small stake in it. Moreover, it required cooperation such as the continuous interest of local active groups and residents to continue this effort. Above all, the media publicized the incident and amplified the activities of members. Meanwhile, there were various conflicts hindering the activities of local communities in the process of restoring the pollution such as the internal conflicts of community groups, conflicts between residents and active groups, and conflicts with the government. The behaviors that appeared in the process of restoring the pollution revealed a form of united governance. Moreover, they changed from an initial "supportive" character to "resistant" and "defensive" activities. Later, it was transformed into "subjective" and "creative" activities.

New three-layer-type hysteretic damper system and its damping capacity

  • Kim, Hyeong Gook;Yoshitomi, Shinta;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.821-838
    • /
    • 2012
  • This paper proposes a new three-layer pillar-type hysteretic damper system for residential houses. The proposed vibration control system has braces, upper and lower frames and a damper unit including hysteretic dampers. The proposed vibration control system supplements the weaknesses of the previously proposed post-tensioning vibration control system in the damping efficiency and cumbersomeness of introducing a post-tension. The structural variables employed in the damper design are the stiffness ratio ${\kappa}$, the ductility ratio ${\mu}_a$, and the ratio ${\beta}$ of the damper's shear force to the maximum resistance. The hysteretic dampers are designed so that they exhibit the targeted damping capacity at a specified response amplitude. Element tests of hysteretic dampers are carried out to examine the mechanical property and to compare its restoring-force characteristic with that of the analytical model. Analytical studies using an equivalent linearization method and time-history response analysis are performed to investigate the damping performance of the proposed vibration control system. Free vibration tests using a full-scale model are conducted in order to verify the damping capacity and reliability of the proposed vibration control system. In this paper, the damping capacity of the proposed system is estimated by the logarithmic decrement method for the response amplitudes. The accuracy of the analytical models is evaluated through the comparison of the test results with those of analytical studies.

A Study on the Finite Element Analysis of springback characteristics according to stamping process conditions of UHSS with UTS of 1.2GPa (1.2GPa급 초고강도강판의 공정조건에 따른 스프링백 특성에 관한 유한요소해석 연구)

  • Jang, Hyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The biggest topics in the automobile industry are light weightening and fuel efficiency improvement. There's a lot of research going on. It is focused on light weight materials. Light weight material is seen as the best way to reduce fuel consumption and to solve the problem of environmental pollution and resource depletion. For the light weight materials, new materials such as aluminum, magnesium, and carbon-hardening materials can be found. Research on the joining techniques of dual materials, improvement of material properties by improving the method of manufacture of existing materials, and studies on ultra-high strength steel sheets are expected to take up the most weight in lightweight materials. As the strength of the ultra-high strength steel sheets increases during forming, it is difficult to obtain dimensional precision due to the increase in elastic restoring force compared to mild or high strength steel sheets. Spring back is known to be affected by a number of factors due to poor plastic molding, and can be divided into the effects of the material spraying and the process. The study on the plasticitic variables were studied as plasticitic factors that can be controlled by a part company. Tensile testing of ultra-high strength materials was conducted to derive properties for plasticitic analysis and to analyze spring back with two factors controlling the height of the bead and blank holding force by adding tensile force and controlling the flow rate.

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

Model on the Contact Lens Movement from Eye-lid Blinking (순목 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Daesoo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.1
    • /
    • pp.145-159
    • /
    • 2004
  • A mathematical model and its computer solution program were proposed to analyze the motion of contact lenses which are being subject to lid-blinking. The equation was derived by incorporating an acceleration induced lid's force exerting on the contact lens, the viscous damping resistance in the tear layer beneath the lens and the sliding frictional force between the lid and the contact lens surface into the formulation of differential equation describing the vibration. The model predicts the time-dependent displacement from the equilibrium postion during/after the blinking. During the blinking, as the time for the completion of one cycle of blinking decreases the off-the-equilibrium displacement of contact lens increases while the decrease of diameter in the contact cause the opposite effect. It is found that lid pressure exerting on the lens cause an insignificant lens displacement from the equilibrium position. After blinking the frequency of damped oscillation of contact lens decreases as the diameter of lens increases, due to the incresed surface while the reduced blinking time does not cause a significant frequency change. This is because that driving force for the contact lens movement posterior to blinking is the capillary-induced force not the lid force.

  • PDF

Shear Force Variation of Stiffening Girder caused by Vibration of Stay Cable (사장 케이블 진동에 의한 보강형의 전단력 변화)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.1-8
    • /
    • 2009
  • Stay cable is easily exposed to vibration induced rainy wind effects. There are some problems for not only unexpected vibration but also well-known vibration. An outbreak of displacement by the said effects brings damages such as over-tension of cables and barriers, fatigue of anchorages and dampers, and additional shear force variation of stiffening girders. This study suggests analytic methodology for dynamic tension variation of cables and shear force variation of stiffening girders. Additionally this study announces with dynamic problems for cable stayed bridge briefly. To realize this subject, we divide restoring force into chord component and normal component and then make up the differential equations which can satisfy physical phenomenon for each component. Finally we apply adequate functions such as sinusoidal and parabola in order to reduce these differential equations. Therefore we can meet with good results through a series of above process. As a remarkable result, CIP recommendations (2002) give inadequate solution with over 10% error. However it gives very good solution if parts of our study are reflected at the said recommendations. The fact means that CIP recommendations (2002) well-known as international standard of stay cables are not even concern about this subject yet. For verification of this study, F.E. analysis using E.C.C. with external forces was fulfilled, and the accuracy and conciseness of this study were shown.

Estimation of Large Amplitude Motions and Wave Loads of a Ship Advancing in Transient Waves by Using a Three Dimensional Time-domain Approximate Body-exact Nonlinear 2nd-order BEM (3 차원 시간영역 근사비선형 2 차경계요소법에 의한 선체의 대진폭 운동 및 파랑하중 계산)

  • Hong, Do-Chun;Hong, Sa-Young;Sung, Hong-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.291-305
    • /
    • 2010
  • A three-dimensional time-domain calculation method is of crucial importance in prediction of the motions and wave loads of a ship advancing in a severe irregular sea. The exact solution of the free surface wave-ship interaction problem is very complicated because of the essentially nonlinear boundary conditions. In this paper, an approximate body nonlinear approach based on the three-dimensional time-domain forward-speed free-surface Green function has been presented. The Froude-Krylov force and the hydrostatic restoring force are calculated over the instantaneous wetted surface of the ship while the forces due to the radiation and scattering potentials over the mean wetted surface. The time-domain radiation and scattering potentials have been obtained from a time invariant kernel of integral equations for the potentials which are discretized according to the second-order boundary element method (Hong and Hong 2008). The diffraction impulse-response functions of the Wigley seakeeping model advancing in transient head waves at various Froude numbers have been presented. A simulation of coupled heave-pitch motion of a long rectangular barge advancing in regular head waves of large amplitude has been carried out. Comparisons between the linear and the approximate body nonlinear numerical results of motions and wave loads of the barge at a nonzero Froude number have been made.