• Title/Summary/Keyword: Response to Disaster

Search Result 1,008, Processing Time 0.029 seconds

A Study on the Accessibility Requirements Analysis Model for the Preventive Safety and Disaster Service Information System - Focusing on the Communication Ability (정보시스템을 통한 생활안전 위험의 예방·대응을 위한 안전약자 요구사항 분석모델 연구 : 의사소통기능을 중심으로)

  • Lee, Yong-Jick;Ji, Seok-yeon;Kim, Sang-hwa
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.10 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • Objective : The purpose of this study is to present an analysis model in developing an inclusive response for safety hazards and disaster preventive information system for vulnerable people to the disaster including persons with disabilities, and those with specific needs. Methods : In this study, the persona analysis method is used to analyze fictitious characters that correspond to various characteristics such as age, disability, environment, occupation, etc. in terms of the scenario of some particular disaster subjects. Based on the user's communication problems derived from the persona analysis, focused group interview and ICF based analysis were implemented to identify needs and arbitration methods. Results : The needs from persona analysis and ICF-based communication items analysis identifies the factors that make each fictitious character difficult in terms of communication in obtaining the benefits consistent with the purpose of the service. The study derives service requirements that can provide arbitration or facilitation methods to increase communication ability of the users. Conclusion : Through the persona analysis method, difficulties that could occur when receiving disaster information using communication devices were identified and analyzed in conjunction with communication problems described in the ICF. In building information services for the prevention of safety hazards and disasters, this study presented a model that uses the persona analysis method and the ICF classification system to derive user requirements for accessible information system.

Educational Program for Radiation Emergency Medicine at the Hirosaki University Graduate School of Health Sciences: A Training Course for Medical Personnel

  • Saito, Yoko;Nakamura, Toshiya;Urushizaka, Mayumi;Kitajima, Yu;Itaki, Chieko;Terashima, Shingo;Hosokawa, Yoichiro
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.436-441
    • /
    • 2016
  • Background: Although nuclear disaster is considered rare, its effects are serious, and we must prepare a system to enable an effective response. Materials and Methods: Since 2010, we have been offering a two-day seminar to provide current nurses and radiological technologists with basic knowledge and train them in radiation emergency medicine (REM) techniques. This training offers lectures to deepen each specialty from the perspective of REM, as well as exercises on ways to handle irradiated and/or contaminated patients. Participants were expected to treat patients according to the concept of REM. Results and Discussion: All participants learn to assess and decontaminate contaminated wounds through drills. The questionnaire survey for participants indicated that participants were satisfied with this training and wanted to attend again. Conclusion: We believe that this training course will provide a valuable opportunity for medical professionals to gain knowledge and expertise in REM.

The Effect of Urban and Climate Characteristics on Energy Resilience - Focusing on Blackout Time - (도시 및 기후특성이 에너지 회복력에 미치는 영향 - 정전발생시간을 중심으로 -)

  • Lee, DongSung;Moon, Tae-Hoon
    • Journal of Korea Planning Association
    • /
    • v.54 no.4
    • /
    • pp.122-130
    • /
    • 2019
  • The purpose of this study is to analyze effect of climate and urban factors on energy resilience, and to explore policy alternatives to strengthen resilience of energy system. For this purpose, this study used extensive literature review on resilience studies and multiple regression analysis. In this study, blackout time was set as a dependent variable. And the independent variables were divided into climate and urban (robustness, countermeasure capacity) characteristics. As a result of the analysis, in terms of climate characteristics, maximum wind speed and cooling/heating degree-day have statistically significant impact on blackout time. With regard to urban characteristics, number of consumer, ratio of deteriorated housing and coast dummy variables have statistically significant impact on blackout time. And the ratio of government employees and road ratio were found to be the most influencing factors to shorten time taken to restore original level of electricity supply. Based on the study results, several policy suggestions to improve energy resilience were made such as continuous management of vulnerable areas and strengthening disaster response services. This study only considered engineering dimension of resilience. Further studies need to be approached on ecological & social-ecological dimension.

Methods to Improve Fire Suppression Capability by Forest Fire Simulation Analysis (산불화재 시뮬레이션분석에 의한 화재진압능력 개선방안)

  • Jeong-Il, Lee;Sung-bae, Cho
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.4
    • /
    • pp.125-134
    • /
    • 2022
  • Forest fires in Korea usually start in the fall and occur every year until spring. Most wildfires are human resources that combine topographical characteristics and carelessness, and failure to respond in the initial stage and lack of cleanup are spreading to large-scale wildfires. In order to prevent these wildfires, active cooperation from the public is essential. As can be seen from recent wildfires, the attention of the public is needed above all else because large-scale wildfires in Korea are occurring due to the people's negligence. If a wildfire spreads and becomes large, it causes damage to life and property, and the damage is irreversible. In this study, various methods were used to prevent forest fires and improve initial suppression ability. In order to minimize damage, the model analyzed by the 119 Special Rescue Team in Gangwon, Chungcheong and nearby forest fires was analyzed on the combustion progress and wind direction by time period. The propagation speed by the wind direction was simulated. Until now, most of the wildfires have been extinguished by firefighting, but I hope that the Forest Service will take the lead and maintain coordination with related organizations.

A Multi-Sensor Module of Snake Robot for Searching Survivors in Narrow Space (협소 공간 생존자 탐색을 위한 뱀형 로봇의 다중 센서 모듈)

  • Kim, Sungjae;Shin, Dong-Gwan;Pyo, Juhyun;Shin, Juseong;Jin, Maolin;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2021
  • In this study, we present a multi-sensor module for snake robot searching survivors in a narrow space. To this end, we integrated five sensor systems by considering the opinions of the first responders: a gas sensor to detect CO2 gases from the exhalation of survivors, a CMOS camera to provide the image of survivors, an IR camera to see in the dark & smoky environment, two microphones to detect the voice of survivors, and an IMU to recognize the approximate location and direction of the robot and survivors. Furthermore, we integrated a speaker into the sensor module system to provide a communication channel between the first responders and survivors. To integrated all these mechatronics systems in a small, compact snake head, we optimized the positions of the sensors and designed a stacked structure for the whole system. We also developed a user-friendly GUI to show the information from the proposed sensor systems visually. Experimental results verified the searching function of the proposed sensor module system.

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

Route Optimization for Emergency Evacuation and Response in Disaster Area (재난지역에서의 대피·대응 동시수행을 위한 다중목적 긴급대피경로 최적화)

  • Kang, Changmo;Lee, Jongdal;Song, Jaejin;Jung, Kwangsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.617-626
    • /
    • 2014
  • Lately, losses and damage from natural disasters have been increasing. Researchers across various fields in Korea are trying to come up with a response plan, but research for evacuation plans is still far from satisfactory. Hence this paper proposes a model that could find an optimized evacuation route for when disasters occur over wide areas. Development of the model used methods including the Dijkstra shortest path algorithm, feasible path method, genetic algorithm, and pareto efficiency. Computations used parallel computing (SPMD) for high performance. In addition, the developed model is applied to a virtual network to check the validity. Finally the adaptability of the model is verified on a real network by computating for Gumi 1stNational Industrial Complex. Computation results proved that this model is valid and applicable by comparison of the fitness values for before optimization and after optimization. This research can contribute to routing for responder vehicles as well as planning for evacuation by objective when disasters occur.

Can Agricultural Aid and Remittances Alleviate Macroeconomic Volatility in Response to Climate Change Shocks? (아프리카 국가들의 경제성장률 변동성에 기후변화, 송금 및 농업 원조가 미치는 영향 분석)

  • You, Soobin;Kim, Taeyoon
    • Environmental and Resource Economics Review
    • /
    • v.25 no.4
    • /
    • pp.471-494
    • /
    • 2016
  • This study investigates the effect of remittance and agricultural aid inflows on GDP growth rate volatility in response to climate change shocks in twenty-eight African countries by using system generalized method of moments from 1996 to 2013 with three years grouped data. The climate change shocks are indicated by four variables; natural disasters, rainfall variability, fluctuation in temperature and the weighted anomaly standardized precipitation (WASP) index. Consequently, natural disasters and temperature variability have a significant effect on GDP volatility, while rainfall variability and WASP index have no adverse consequence on stabilization of the economy. On the other hand, in general, remittances and agricultural aid are helpful to stabilize the economy and especially remittances inflows can play a crucial role as insurance when natural disasters occur.

Improvement Plan for Prevention Regulations to Improve Hazardous Material Safety Management

  • Seongju Oh;Jaewook Lee;Hasung Kong
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.346-357
    • /
    • 2023
  • The purpose of this study is to suggest improvement plans for prevention regulations by reflecting the toxicity, fire and explosion effects of hazardous materials factories and surrounding areas using an off-site consequence assessment program. Regarding the effects of the hydrogen cyanide leak accident, which is the 1st petroleum of the 4th class flammable liquid, Areal Locations of Hazardous Atmospheres (ALOHA) program was used to compare and analyze the extent of damage effects for toxicity, overpressure, and radiation. As a result, the toxicity was analyzed to exceed 5km in the area with Acute exposure guideline level (AEGL)-2 concentration or higher, the overpressure was 103m in the range of 1 psi or more, and the radiant heat was analyzed to be 724m in the range of 2kw/m2 or more. Toxicity and radiation affected the area outside the hazardous material storage area, but the overpressure was limited to the inside of the hazardous material storage area. Therefore, we propose to improve the safety management of hazardous materials by conducting a risk assessment for hazardous materials and reflecting the results in internal and external emergency response plans to prepare prevention regulations.

Energy-factor-based damage-control evaluation of steel MRF systems with fuses

  • Ke, Ke;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.22 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • The primary objectives of this research are to investigate the energy factor response of steel moment resisting frame (MRF) systems equipped with fuses subject to ground motions and to develop an energy-based evaluation approach for evaluating the damage-control behavior of the system. First, the energy factor of steel MRF systems with fuses below the resilience threshold is derived utilizing the energy balance equation considering bilinear oscillators with significant post-yielding stiffness ratio, and the effect of structural nonlinearity on the energy factor is investigated by conducting a parametric study covering a wide range of parameters. A practical transformation approach is also proposed to associate the energy factor of steel MRF systems with fuses with classic design spectra based on elasto-plastic systems. Then, the energy balance is extended to structural systems, and an energy-based procedure for damage-control evaluation is proposed and a damage-control index is also derived. The approach is then applied to two types of steel MRF systems with fuses to explore the applicability for quantifying the damage-control behavior. The rationality of the proposed approach and the accuracy for identifying the damage-control behavior are demonstrated by nonlinear static analyses and incremental dynamic analyses utilizing prototype structures.