• Title/Summary/Keyword: Response surface

Search Result 4,788, Processing Time 0.034 seconds

A Response Surface Model Based on Absorbance Data for the Growth Rates of Salmonella enterica Serovar Typhimurium as a Function of Temperature, NaCl, and pH

  • Park, Shin-Young;Seo, Kyo-Young;Ha, Sang-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.644-649
    • /
    • 2007
  • Response surface model was developed for predicting the growth rates of Salmonella enterica sv. Typhimurium in tryptic soy broth (TSB) medium as a function of combined effects of temperature, pH, and NaCl. The TSB containing six different concentrations of NaCl (0, 2, 4, 6, 8, and 10%) was adjusted to an initial of six different pH levels (pH 4, 5, 6, 7, 8, 9, and 10) and incubated at 10 or $20^{\circ}C$. In all experimental variables, the primary growth curves were well $(r^2=0.900\;to\;0.996)$ fitted to a Gompertz equation to obtain growth rates. The secondary response surface model for natural logarithm transformations of growth rates as a function of combined effects of temperature, pH, and NaCl was obtained by SAS's general linear analysis. The predicted growth rates of the S. Typhimurium were generally decreased by basic (9, 10) or acidic (5, 6) pH levels or increase of NaCl concentrations (0-8%). Response surface model was identified as an appropriate secondary model for growth rates on the basis of coefficient determination $(r^2=0.960)$, mean square error (MSE=0.022), bias factor $(B_f=1.023)$, and accuracy factor $(A_f=1.164)$. Therefore, the developed secondary model proved reliable predictions of the combined effect of temperature, NaCl, and pH on growth rates for S. Typhimurium in TSB medium.

Methodology of Springback Prediction of Automotive Parts Applied 3rd Generation AHSS Using the Progressive Meta Model (프로그레시브 메타모델을 이용한 3세대 초고장력강판 적용 차체 부품의 스프링백 예측 방법론)

  • Yoon, J.I.;Oh, K.H.;Lee, S.R.;Yoo, J.H.;Kim, T.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.241-250
    • /
    • 2020
  • In this study, the methodology of the springback prediction of automotive parts applied 3rd generation AHSS was investigated using the response surface model analysis based on a regression model, and the meta model analysis based on a Kriging model. To design the learning data set for constructing the springback prediction models, and the experimental design was conducted at three levels for each processing variable using the definitive screening designs method. The hat-shaped member, which is the basic shape of the member parts, was selected and the springback values were measured for each processing type and processing variable using the finite element analysis. When the nonlinearity of the variables is small during the hat-shaped member forming, the response surface model and the meta model can provide the same processing parameter. However, the accuracy of the springback prediction of the meta model is better than the response surface model. Even in the case of the simple shape parts forming, the springback prediction accuracy of the meta model is better than that of the response surface model, when more variables are considered and the nonlinearity effect of the variables is large. The efficient global optimization algorithm-based Kriging is appropriate in resolving the high computational complexity optimization problems such as developing automotive parts.

Improvement of the Design Space Feasibility Using the Response Surface and Kriging Method (반응면 기법과 크리깅 기법을 이용한 설계공간의 타당성 향상)

  • Ku, Yo-Cheon;Jeon, Yong-Heu;Kim, Yu-Shin;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.32-38
    • /
    • 2005
  • In this research, a procedure to improve the feasibility of design space is proposed by an approximation model. The Chebyshev Inequality is used as the criterion of modification of design space. This procedure is applied to the aero-elastic transonic wing design problem and the feasibility of the design space is greatly improved. Also the optimization results are improved by appling this procedure. That is, the probability to satisfy all imposed constraints is increased and the better design points are included in design space after this procedure. And the use of both a second-order response surface model and the Kriging model is investigated and compared in accuracy, efficiency, and robustness as approximation models in this procedure for different sampling methods. As a result, the second-order response surface model is more appropriate for our application than the Kriging model, because it is linear enough to be fitted well by the response surface model.

Optimization of the Manufacturing of Process Butter by Response Surface Methodology and Its Texture and Rheological Properties (반응표면분석법에 의한 가공버터 제조의 최적화 및 Rheology 분석)

  • Suh, Mun-Hui;Yoon, Kyeong;Baick, Seung-Chun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • Using central composite design, we have designed optimization of the manufacturing of processed butter. And response surface analysis by least-square regression was used Statistical Analysis System(SAS). Central composite design can be achieved by response surface techniques that allow flexibility in modeling and analysis. Response surface methodology(RSM) was used to optimize hardness(%) using as independent variables; the content of butter($X_1$), ranging from 50 to 90(%), the content of soybean oil($X_2$), from 0 to 20(%), and the hydrogenated soybean oil($X_3$) from 0 to 4(%). The results on the regression coefficients calculated for overrun by response surface by least-square regression(RSREG) were followed. It was considered that the linear regression was significant(p<0.01). As for the processed butter, the regression model equation for the hardness(Y, %) to the change of an independent variable could be predicted as follow: $Y=60.88-8.92X_2-{29.3X_2}^2$. The optimal for the manufacturing of processed butter were determined at the content of butter of 88.22%, soybean oil of 6.71% and hydrogenated soybean oil of 2.36%, respectively. Optimum compositions were resulted in hardness of 65.78 N. Finally the reference sample(Butter in the morning, Seoul Dairy Co-op.) and processed butter manufacturing under the optimal conditions were compared with spreadability test. The spreadability scores result from reference sample and butter under optimal conditions was not found a significant difference.

  • PDF

Monitoring of Dynamic Changes in Maillard Reaction Substrates by Response Surface Methodology (반응표면분석에 의한 Maillard 반응기질의 동적변화 모니터링)

  • Lee, Gee-Dong;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.212-219
    • /
    • 1996
  • Four-dimensional response surface methodology was used for monitoring dynamic changes in substrates during Maillard reaction. The coefficients of determination ($R^2$) of response surface regression equations for the changes in amino acids during Maillard reaction were 0.9478 for total amino acids and above 0.90 for each amino acid. $R^2$ of regression equations for the changes in sugars during Maillard reaction were 0.9250 for glucose and 0.6490 for fructose. The contents of total amino acids gradually decreased with increasing reaction temperature and pH of the solvent. Browning color intensity increased with rising reaction temperature, showing maximum color intensity at around $145^{\circ}C$. Each amino acid showed a decreasing tendency in its contents, which was similarly found in total amino acids. Four-dimensional response surface methodology indicated that the increased temperature during Maillard reaction was the most influential factor in decreasing substrates, such as aspartic acid, threonine and glucose. While the reaction time and pH of solvent little affected the changes in the above-mentioned substrates during Maillard reaction.

  • PDF

Optimization of Batch Production of Chiral Phenyl Oxirane by Response Surface Analysis (반응표면분석법을 이용한 광학활성 phenyl oxirane의 회분식생산 최적화)

  • 김희숙;박성훈;이은열
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.794-798
    • /
    • 2003
  • Batch production of (S)-phenyl oxirane was investigated using epoxide hydrolase activity of Rhodosporidium toruloides SJ-4. Effect of reaction condition of asymmetric biohydrolysis of racemic phenyl oxirane was analyzed and optimized by response surface methodology. The optimal conditions of pH, temperature and DMSO cosolvent ratio were 7.4, $34^P\circ}C$, and 2.3%(v/v), respectively. The final yield was enhanced up to 67%, and reaction times required to reach 99% ee (enatiomeric excess) decreased down to 50% by response surface methodology Enantiopure (S)-phenyl oxirane with 100% enantiopurity and 24% yield (theoretical yield = 50%) was obtained from racemic substrate.

Onset condition of the combustion-driven sound in a surface burner (표면 연소기의 연소진동음의 발생조건)

  • Kwon, Y.P.;Lee, J.W.;Lee, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF

Development of a Multiple Response Surface Method Considering Bias and Variance of Desirability Functions (만족도 함수의 편향과 산포를 고려한 다중반응표면최적화 기법 개발)

  • Jung, Ki-Hyo;Lee, Sang-Ki
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • Desirability approaches have been proposed to find an optimum of multiple response problem. The existing desirability approaches use either of mean or min of individual desirability in aggregation of multiple responses. However, in order to find an optimum having high mean and low dispersion among individual desirability, the dispersion needs to be simultaneously considered with its mean. This study proposes bias and variance (BV) method which aggregates bias (ideal target-mean) and variance of individual desirability in multiple response optimization. The proposed BV method was applied to an example to evaluate its usefulness by comparing with existing methods. Evaluation results showed that the solution of BV method was a fairly good compared with DS (Derringer and Suich, 1980) and KL (Kim and Lin, 2000) methods. The BV method can be utilized to multiple response surface problems when decision makers want to find an optimum having high mean and low variance among responses.

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System (반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계)

  • Baek Seok-Heum;Cho Soek-Swoo;Joo Won-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF