Browse > Article

A Response Surface Model Based on Absorbance Data for the Growth Rates of Salmonella enterica Serovar Typhimurium as a Function of Temperature, NaCl, and pH  

Park, Shin-Young (Institute of Biomedical Science, Hanyang University)
Seo, Kyo-Young (Department of Food Science and Technology, Chung-Ang University)
Ha, Sang-Do (Department of Food Science and Technology, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.4, 2007 , pp. 644-649 More about this Journal
Abstract
Response surface model was developed for predicting the growth rates of Salmonella enterica sv. Typhimurium in tryptic soy broth (TSB) medium as a function of combined effects of temperature, pH, and NaCl. The TSB containing six different concentrations of NaCl (0, 2, 4, 6, 8, and 10%) was adjusted to an initial of six different pH levels (pH 4, 5, 6, 7, 8, 9, and 10) and incubated at 10 or $20^{\circ}C$. In all experimental variables, the primary growth curves were well $(r^2=0.900\;to\;0.996)$ fitted to a Gompertz equation to obtain growth rates. The secondary response surface model for natural logarithm transformations of growth rates as a function of combined effects of temperature, pH, and NaCl was obtained by SAS's general linear analysis. The predicted growth rates of the S. Typhimurium were generally decreased by basic (9, 10) or acidic (5, 6) pH levels or increase of NaCl concentrations (0-8%). Response surface model was identified as an appropriate secondary model for growth rates on the basis of coefficient determination $(r^2=0.960)$, mean square error (MSE=0.022), bias factor $(B_f=1.023)$, and accuracy factor $(A_f=1.164)$. Therefore, the developed secondary model proved reliable predictions of the combined effect of temperature, NaCl, and pH on growth rates for S. Typhimurium in TSB medium.
Keywords
Salmonella Typhimurium; response surface model; growth rates;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Adair, C., D. C. Kilsby, and P. T. Whittall. 1989. Comparison of the School field (non-linear Arrhenius) model and the square root model for predicting bacterial growth in foods. Food Microbiol. 6: 7-18   DOI
2 Bhaduri, S., C. O. Turner-Jones, R. L. Buchanan, and J. G. Phillips. 1994. Response surface models of the effect of pH, sodium chloride and sodium nitrite on growth of Yersinia enterocolitica at low temperatures. Int. J. Food Microbiol. 23: 333-343   DOI   ScienceOn
3 Bovill, R., J. Bew, N. Cook, M. D'Agostino, N. Wilkinson, and J. Baranyi. 2000. Predictions of growth for Listeria monocytogenes and Salmonella during fluctuating temperature. Int. J. Food Microbiol. 59: 157-165   DOI   ScienceOn
4 Buchanan, R. L. 1993. Predictive food microbiology. Trends Food Sci. Technol. 4: 6-11   DOI   ScienceOn
5 Cho, S.-A., I. S. Lee, J. H. Park, S. H. Seok, H. Y. Lee, D. J. Kim, M. W. Back, S. H. Lee, S. J. Hur, S. J. Ban, Y. K. Lee, and J. H. Park. 2005. Safety and immunogenicity of Salmonella enterica serovar Typhimurium IIaB in mice. J. Microbiol. Biotechnol. 15: 609-615   과학기술학회마을
6 Dalgaard, P., T. Ross, L. Kamperman, K. Neumeyer, and T. A. McMeekin. 1994. Estimation of bacterial growth rates from turbidimetric and viable count data. Int. J. Food Microbiol. 23: 391-404   DOI   ScienceOn
7 Lee, M.-J., D. H. Bae, D. H. Lee, K. H. Jang, D. H. Oh, and S. D. Ha. 2006. Reduction of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. J. Microbiol. Biotechnol. 16: 639-642   과학기술학회마을
8 Mishu, B., J. Koehler, L. A. Lee, D. Rodrigue, F. H. Berenner, P. Blake, and R. V. Tauxe. 1994. Outbreaks of Salmonella enteritidis infections in the United States, 1985-1991. J. Infect. Dis. 169: 547-552
9 Neumeyer, K., T. Ross, and T. A. McMeekin. 1997. Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage Pseudomonas. Int. J. Food Microbiol. 38: 45-54   DOI   ScienceOn
10 Oscar, T. P. 2002. Development and validation of a tertiary simulation model for predicting growth of Salmonella typhimurium on cooked chicken. Int. J. Food Microbiol. 76: 177-190   DOI   ScienceOn
11 Ross, T., P. Dalgaard, and S. Tienungoon, 2000. Predictive modelling of the growth and survival of Listeria in fishery products. Int. J. Food Microbiol. 62: 231-245   DOI   ScienceOn
12 SAS Institute Inc. 2002. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, U.S.A
13 Skinner, G. E., J. W. Larkin, and E. J. Rhodehamel. 1994. Mathematical modeling of microbial growth: A review. J. Food Safety 14: 175-217   DOI   ScienceOn
14 Hedberg, C. W., M. J. David, K. E. White, K. L. MacDonald, and M. T. Osterholm. 1993. Role of egg consumption in sporadic Salmonella enteritidis and Salmonella typhimurium infections in Minnesota. J. Infect. Dis. 167: 107-111   DOI   ScienceOn
15 Wilson, P. D. G., D. R. Wilson, T. F. Brocklehurst, H. P. Coleman, G. Mitchell, C. R. Waspe, S. A. Jukes, and M. M. Robins. 2003. Batch growth of Salmonella typhimurium LT2: Stoichiometry and factors leading to cessation of growth. Int. J. Food Microbiol. 89: 195-203   DOI
16 Soboleva, T. K., A. B. Pleasants, and G. le Roux. 2000. Predictive microbiology and food safety. Int. J. Food Microbiol. 57: 183-192   DOI   ScienceOn
17 Nerbrink, E., E. Borch, H. Blom, and T. Nesbakken. 1999. A model based on absorbance data on the growth rate of Listeria monocytogenes and including the effects of pH, NaCl, Na-lactate and Na-acetate. Int. J. Food Microbiol. 47: 99-109   DOI   ScienceOn
18 Oscar, T. P. 1999. Response surface models for effects of temperature and previous growth sodium chloride on growth kinetics of Salmonella typhimurium on cooked chicken breast. J. Food Prot. 62: 1470-1474   DOI
19 Duffy, L. L., P. B. Vanderlinde, and F. H. Grau. 1994. Growth of Listeria monocytogenes on vacuum-packed cooked meats: Effects of pH, $a_{w}$, nitrite and ascorbate. Int. J. Food Microbiol. 23: 377-390   DOI   ScienceOn
20 GraphPad Software Inc. 2003. User's Guide. San Diego, California, U.S.A
21 Whiting, R. C. and R. L. Buchanan. 1997. Predictive modeling, pp. 728-739. In M. P. Doyle, L. R. Beuchat, and T. J. Montville (eds.), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington, D.C
22 Dlgaard, P., O. Mejlholm, and H. H. Huss. 1997. Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. Int. J. Food Microbiol. 38: 169-179   DOI
23 Sutherland, J. P., A. J. Bayliss, and T. A. Roberts. 1994. Predictive modeling of growth of Staphylococcus aureus: The effects of temperature, pH, and sodium chloride. Int. J. Food Microbiol. 21: 217-236   DOI   ScienceOn
24 Ross, T. 1999. Meat and Livestock Australia, Sydney, Australia. Predictive Food Microbiology Models in the Meat Industry
25 Tietjen, M. and D. Y. C. Fung. 1995. Salmonellae and food safety. Crit. Rev. Microbiol. 21: 53-83   DOI   ScienceOn
26 Buchanan, R. L., L. K. Bagi, R. V. Goins, and J. G. Phillips. 1993. Response surface model for the growth kinetics of Escherichia coli O157:H7. Food Microbiol. 10: 303-315   DOI   ScienceOn
27 Grimont, P. A., D. F. Grimont, and P. Bouvet. 2000. Taxonomy of the genus Salmonella, pp. 1-17. In C. Wray and A. Wray (eds.), Salmonella in Domestic Animals. CAB Int., Wallingford, U.K
28 Ziprin, R. L., D. E. Corrier, A. Hinton Jr., R. C. Beier, G.. E. Spates, J. R. DeLoach, and M. H. Elissadle. 1990. Intracloacal Salmonella Typhimurium infection of broiler chickens: Reduction of colonization with anaerobic organisms and dietary lactose. Avian Dis. 34: 749-753   DOI   ScienceOn
29 Park, S. Y., J. W. Choi, J. H. Yeon, M. J. Lee, D. H. Chung, M. G. Kim, K. H. Lee, K. S. Kim, D. H. Lee, G. J. Bahk, D. H. Bae, K. Y. Kim, C. H. Kim, and S. D. Ha. 2005. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol.15: 1323-1329   과학기술학회마을
30 Palwnbo, S. A., A. C. Williams, R. L. Buchanan, and J. G. Phillips. 1991. Model for the aerobic growth of Aeromonas hydrophila K144. J. Food Prot. 54: 429-435   DOI
31 Oscar, T. P. 2004. A quantitative risk assessment model for Salmonella and whole chicken. Int. J. Food Microbiol. 93: 231-247   DOI   ScienceOn
32 Zurera-Cosano, G., A. M. Castillejo-Rodriguez, R. M. Garcia-Gimeno, and F. Rincon-Leon. 2004. Performance of response surface and Davey model for prediction of Staphylococcus aureus growth parameters under different experimental conditions. J. Food Prot. 67: 1138-1145   DOI
33 Choi, J. H., J. I. Choi, and S. Y. Lee. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium Omp C. J. Microbiol. Biotechnol. 15: 141-146   과학기술학회마을
34 Grau, F. H. and P. B. Vanderlinede. 1993. Aerobic growth of Listeria monocytogenes on beef lean and fatty tissue: Equations describing the effects of temperature and pH. J. Food Prot. 56: 96-101   DOI
35 McClure, P. J., C. D. Blackburn, M. B. Cole, P. S. Curtis, J. E. Jones, J. D. Legan, I. D. Ogden, M. W. Peck, T. A. Roberts, J. P. Sutherland, and S. J. Walker. 1994. Modelling the growth, survival and death of microorganisms in foods: The UK Food Micromodel approach. Int. J. Food Microbiol. 23: 265-275   DOI   ScienceOn
36 Mead, P. S., L. Slutsker, V Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607-625   DOI
37 Gibson, A. M., N. Bratchell, and T. A. Roberts. 1988. Predicting microbial growth: Growth responses of Salmonella in a laboratory medium as affected by pH, sodium chloride and storage temperature. Int. J. Food Microbiol. 6: 155-178   DOI   ScienceOn
38 Schaffuer, D. W. and T. P. Labuza. 1997. Predictive microbiology: Analyzing the present and the future. Food Technol. 51: 95-99
39 El-Gazzar, F. E. and E. H. Marth. 1975. Salmonellae, salmonellosis, and dairy foods: A review. J. Dairy Sci. 75: 2327-2343
40 Buchanan, R. L. and J. G. Phillips. 1990. Response surface models for predicting the effects of temperature, pH, sodium chloride content, sodium nitrite concentration and atmosphere on the growth of Listeria monocytogenes. J. Food Prot. 53: 370-376   DOI
41 Jung, S. J., H. J. Kim, and H. Y. Kim. 2005. Quantitative detection of Salmonella typhimurium contamination in milk, using real-time PCR. J. Microbiol. Biotechnol. 15: 1353-1358   과학기술학회마을
42 Ross, T. 1996. Indices for performance evaluation of predictive models in food microbiology. J. Appl. Bacteriol. 81: 501-508
43 D'Aoust, J. Y. 1997. Salmonella species, pp. 129-158. In M. P. Doyle, L. R. Beuchat, and T. J. Montville (eds.), Food Microbiology: Fundamentals and Frontiers. ASM Press, Washington, D.C
44 Baumler, A. J., B. M. Hargis, and R. M. Tsoils. 2000. Tracing the origins of Salmonella outbreaks. Science 287: 50-52   DOI