• Title/Summary/Keyword: Response correction

Search Result 391, Processing Time 0.025 seconds

A new refined hyperbolic shear deformation theory for laminated composite spherical shells

  • Kada, Draiche;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.707-722
    • /
    • 2022
  • In this study, a new refined hyperbolic shear deformation theory (RHSDT) is developed using an equivalent single-layer shell displacement model for the static bending and free vibration response of cross-ply laminated composite spherical shells. It is based on a new kinematic in which the transverse displacement is approximated as a sum of the bending and shear components, leading to a reduction of the number of unknown functions and governing equations. The proposed theory uses the hyperbolic shape function to account for an appropriate distribution of the transverse shear strains through the thickness and satisfies the boundary conditions on the shell surfaces without requiring any shear correction factors. The shell governing equations for this study are derived in terms of displacement from Hamilton's principle and solved via a Navier-type analytical procedure. The validity and high accuracy of the present theory are ascertained by comparing the obtained numerical results of displacements, stresses, and natural frequencies with their counterparts generated by some higher-order shear deformation theories. Further, a parametric study examines in detail the effect of both geometrical parameters (i.e., side-to-thickness ratio and curvature-radius-to-side ratio), on the bending and free vibration response of simply supported laminated spherical shells, which can be very useful for many modern engineering applications and their optimization design.

Positional correction of a 3D position-sensitive virtual Frisch-grid CZT detector for gamma spectroscopy and imaging based on a theoretical assumption

  • Younghak Kim ;Kichang Shin ;Aleksey Bolotnikov;Wonho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1718-1733
    • /
    • 2023
  • The virtual Frisch-grid method for room-temperature radiation detectors has been widely used because of its simplicity and high performance. Recently, side electrodes were separately attached to each surface of the detectors instead of covering the entire detector surface with a single electrode. The side-electrode structure enables the measurement of the three-dimensional (3D) gamma-ray interaction in the detector. The positional information of the interaction can then be utilized to precisely calibrate the response of the detector for gamma-ray spectroscopy and imaging. In this study, we developed a 3D position-sensitive 5 × 5 × 12 mm3 cadmium-zinc-telluride (CZT) detector and applied a flattening method to correct detector responses. Collimated gamma-rays incident on the surface of the detector were scanned to evaluate the positional accuracy of the detection system. Positional distributions of the radiation interactions with the detector were imaged for quantitative and qualitative evaluation. The energy spectra of various radioisotopes were measured and improved by the detector response calibration according to the calculated positional information. The energy spectra ranged from 59.5 keV (emitted by 241Am) to 1332 keV (emitted by 60Co). The best energy resolution was 1.06% at 662 keV when the CZT detector was voxelized to 20 × 20 × 10.

Structural performance evaluation of a steel-plate girder bridge using ambient acceleration measurements

  • Yi, Jin-Hak;Cho, Soojin;Koo, Ki-Young;Yun, Chung-Bang;Kim, Jeong-Tae;Lee, Chang-Geun;Lee, Won-Tae
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.281-298
    • /
    • 2007
  • The load carrying capacity of a bridge needs to be properly assessed to operate the bridge safely and maintain it efficiently. For the evaluation of load carrying capacity considering the current state of a bridge, static and quasi-static loading tests with weight-controlled heavy trucks have been conventionally utilized. In these tests, the deflection (or strain) of the structural members loaded by the controlled vehicles are measured and analyzed. Using the measured data, deflection (or strain) correction factor and impact correction factor are calculated. These correction factors are used in the enhancement of the load carrying capacity of a bridge, reflecting the real state of a bridge. However, full or partial control of the traffic during the tests and difficulties during the installment of displacement transducers or strain gauges may cause not only inconvenience to the traffic but also the increase of the logistics cost and time. To overcome these difficulties, an alternative method is proposed using an excited response part of full measured ambient acceleration data by ordinary traffic on a bridge without traffic control. Based on the modal properties extracted from the ambient vibration data, the initial finite element (FE) model of a bridge can be updated to represent the current real state of a bridge. Using the updated FE model, the deflection of a bridge akin to the real value can be easily obtained without measuring the real deflection. Impact factors are obtained from pseudo-deflection, which is obtained by double-integration of the acceleration data with removal of the linear components on the acceleration data. For validation, a series of tests were carried out on a steel plategirder bridge of an expressway in Korea in four different seasons, and the evaluated load carrying capacities of the bridge by the proposed method are compared with the result obtained by the conventional load test method.

An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation (오픈소스 기반 다목적실용위성 3A호 영상자료의 지표면 반사도 영상 제작 실험)

  • Lee, Kiwon;Kim, Kwangseob
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1327-1339
    • /
    • 2019
  • Surface reflectance obtained by absolute atmospheric correction from satellite images is useful for scientific land applications and analysis ready data (ARD). For Landsat and Sentinel-2 images, many types of radiometric processing methods have been developed, and these images are supported by most commercial and open-source software. However, in the case of KOMPSAT 3/3A images, there are currently no tools or open source resources for obtaining the reflectance at the top-of-atmosphere (TOA) and top-of-canopy (TOC). In this study, the atmospheric correction module of KOMPSAT 3/3A images is newly implemented to the optical calibration algorithm supported in the Orfeo ToolBox (OTB), a remote sensing open-source tool. This module contains the sensor model and spectral response data of KOMPSAT 3A. Aerosol measurement properties, such as AERONET data, can be used to generate TOC reflectance image. Using this module, an experiment was conducted, and the reflection products for TOA and TOC with and without AERONET data were obtained. This approach can be used for building the ARD database for surface reflection by absolute atmospheric correction derived from KOMPSAT 3/3A satellite images.

Proposal and Verification of Image Sensor Non-uniformity Correction Algorithm (영상센서 픽셀 불균일 보정 알고리즘 개발 및 시험)

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.29-33
    • /
    • 2007
  • All pixels of image sensor do not react uniformly even if the light of same radiance enters into the camera. This non-uniformity comes from the sensor pixel non-uniformity and non-uniformity induced by the changing transmission of the telescope over the field. The first contribution to the non-uniformity has high spatial frequency nature and has an influence on the result and quality of the data compression. The second source of non-uniformity has low frequency nature and has no influence of the compression result. As the contribution resulting from the sensor PRNU(Photo Response Non-Uniformity) is corrected inside the camera electronics, the effect of the remaining non-uniformity to the compression result will be negligible. The non-uniformity correction result shall have big difference according to the sensor modeling and the calculation method to get correction coefficient. Usually, the sensor can be modeled with one dimensional coefficients which are a gain and a offset for each pixel. Only two measurements are necessary theoretically to get coefficients. However, these are not the optimized value over the whole illumination level. This paper proposes the algorithm to calculate the optimized non-uniformity correction coefficients over whole illumination radiance. The proposed algorithm uses several measurements and the least square method to get the optimum coefficients. The proposed algorithm is verified using the own camera electronics including sensor, electrical test equipment and optical test equipment such as the integrating sphere.

A Case Study of Online Writing Class - Focusing on at G University and the Response of Learners - (온라인 글쓰기 수업 운영 사례 연구 - G대학의 <교양글쓰기> 사례와 학습자의 반응을 중심으로 -)

  • Song, Dae-Heon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.6
    • /
    • pp.115-125
    • /
    • 2021
  • The study presented an online class case focusing on G University's writing course, and analyzed students' satisfaction. Through this, it aimed to analyze the possibility of online education and to explore efficient operation of online writing lectures. According to the result of looking into the online writing class run by G University, students' satisfaction with the online writing class was high. Despite the limited circumstances, students' participation in the class was high and they also actively participated in online correction. However, there was also a challenge to address. Online writing education showed limitations in terms of smooth communication with students. Correction of writing can be done online sufficiently but the limitations of communication should be supplemented to improve the completeness of interactive education. In addition, most of the students participated in online correction, but some did not participate. It is necessary to encourage students to participate voluntarily to make online classes take roots. After all, for the effective operation of online writing classes, strategies and systems for teaching and learning should be prepared for utilization of various educational video media, sufficient learning of theory and practice of writing, and smooth communication between professors and students. Only when these conditions are met, online writing classes will be able to operate steadily.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

A Study for the Development of Neurofeedback Biosignal Index for Tic Response Supression Test of Tourette's Syndrome (투렛증후군의 틱 반응 억제 시험을 통한 뉴로피드백 생체신호 지표 개발 시론)

  • Woo, Jeong-Gueon;Kim, Wuon-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.861-869
    • /
    • 2022
  • In patients with Tourette's syndrome, a tic occurs when Mu wave synchronization is broken. Conversely, when Mu wave synchronization is achieved, a tick does not occur. When the tic is suppressed, the cognitive control response process is changed, and if the neurofeedback training that adjusts the EEG frequency power is performed with the changed, the patient will be treated autonomously without artificially suppressing the tic. The results of the research test suggest that if the tic patient does not artificially synchronize mu waves in the premotor cortex (Frontal Cortical 3 site), and if EEG control is performed autonomously like neurofeedback training, as a result, tics do not occur. Cognitive control response processes are altered when a subject is inhibited from tics. By training the altered cognitive control with neurofeedback that modulates EEG frequency power, the patient can be treated autonomously without artificially suppressing the tic.Mu-wave synchronizationcan now be added to existing neurofeedback treatment protocols such as SMR reinforcement, theta-beta-wave imbalance correction, and alpha-wave reinforcement. This study will be used in follow-up studies and clinical trials to more scientifically verify the neurofeedback treatment protocol, a treatment for patients with Tourette's syndrome.

Analysis and Design of Sliding Mode Control for a Single-Phase AC-DC Converter

  • Sawaengsinkasikit, Winyu;Tipsuwanporn, Vittaya;Tarasantisuk, Chanlit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2291-2294
    • /
    • 2003
  • In this paper, analysis and control design of ac-dc converter, normally nonlinear time-varying system, using sliding mode controller to achieve fast output voltage response, disturbance rejection and robust system in the presence of load variation are demonstrated. The objective of this method is to develop methodology for output voltage to be constant and input current sinusoidal that results in nearly unity power factor, respectively. In addition the converter can be also bidirectional power flow. Simulation results using Matlab/Simulink show the effectiveness of sliding mode control system compared with linear feedback controller to guarantee enhanced PF>0.98, THD<5%, and ripple output voltage is less than 1% at the maximum output power.

  • PDF