• Title/Summary/Keyword: Response and capacity

Search Result 1,656, Processing Time 0.032 seconds

Determination Process of Drift Capacity for Seismic Performance Evaluation of Steel Tall Buildings (초고층 철골 건축물의 내진성능평가를 위한 Drift Capacity 산정 프로세스)

  • Min, Ji Youn;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.481-490
    • /
    • 2006
  • The actual performance of a building during an earthquake depends on many factors. The prediction of the seismic performance of a new or existing structure is complex, due not only to the large number of factors that need to be considered and the complexity of the seismic response, but also due to the large inherent uncertainties and randomness associated with making these predictions. A central issue of this research is the proper treatment and incorporation of these uncertainties and randomness in the evaluation of structural capacity and response has been adopted in the seismic performance evaluation of steel tall buildings to account for the uncertainties and randomness in seismic demand and capacities in a consistent manner. The basic framework for reliability-based seismic performance evaluation and the key factors for statistical studies were summarized. A total of 36 target structures that represent typical tall steel buildings based on national building code (KBC-2005) were designed for the statistical studies of demand factor s and capacity factors. The incremental dynamic analysis (IDA) approach was examined through the simple steel moment frame building in determination of global drift capacity.

Reliability of analytical models for the prediction of out-of-plane capacity of masonry infills

  • Pasca, Monica;Liberatore, Laura;Masiani, Renato
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.765-781
    • /
    • 2017
  • The out-of-plane response of infill walls has recently gained a growing attention and has been recognised fundamental in the damage assessment of reinforced concrete and steel framed buildings subjected to seismic loads. The observation of damage after earthquakes highlighted that out-of-plane collapse of masonry infills may occur even during seismic events of low or moderate intensity, causing both casualty risks and unfavourable situations affecting the overall structural response. Even though studies concerning the out-of-plane behaviour of infills are not as many as those focused on the in-plane response, in the last decades, a substantial number of researches have been carried out on the out-of-plane behaviour of infills. In this study, the out-of-plane response is investigated considering different aspects. First, damages observed after past earthquakes are examined, with the aim of identifying the main parameters involved and the most critical configurations. Secondly, the response recorded in about 150 experimental tests is deeply examined, focusing on the influence of geometrical characteristics, boundary conditions, prior in-plane damage, presence of reinforcing elements and openings. Finally, different theoretical capacity models and code provisions are discussed and compared, giving specific attention to those based on the arching theory. The reliability of some of these models is herein tested with reference to experimental results. The comparison between analytically predicted and experimental values allows to appreciate the extent of approximation of such methods.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Evaluation of Capacity Spectrum Methods for Estimating the Peak Inelastic Responses (최대 비탄성 변위 응답 예측을 위한 기존 능력스펙트럼법들의 유효성 평가 및 비교)

  • 김홍진;민경원;이상현;박민규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.35-44
    • /
    • 2004
  • In the capacity spectrum method(CSM) using a linear response spectrum, the peak response of an inelastic system under a given earthquake load is estimated transforming the system into the equivalent elastic one. The CSM for estimating the peak inelastic response is evaluated in this paper. The equivalent period and damping ratio are calculated using the ATC-40, G lkan, Kowalsky, and Iwan methods, and the performance points are obtained according to the procedure B of ATC-40. Analysis results indicate that the ATC-40 method generally underestimates the peak response resulting in the unsafe design, while the G lkan and Kowalsky methods overestimate the responses. The Iwan method produces the values between those by the ATC-40 method and the G lkan and Kowalsky methods, and estimates the responses relatively closer to the exact ones. Further, it is found that the Kowalsky method gives the negative equivalent damping ratios depending on the hardening ratios, and thereby can not be used to estimate the responses in some cases.

Nonlocal Formulation for Numerical Analysis of Post-Blast Behavior of RC Columns

  • Li, Zhong-Xian;Zhong, Bo;Shi, Yanchao;Yan, Jia-Bao
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.403-413
    • /
    • 2017
  • Residual axial capacity from numerical analysis was widely used as a critical indicator for damage assessment of reinforced concrete (RC) columns subjected to blast loads. However, the convergence of the numerical result was generally based on the displacement response, which might not necessarily generate the correct post-blast results in case that the strain softening behavior of concrete was considered. In this paper, two widely used concrete models are adopted for post-blast analysis of a RC column under blast loading, while the calculated results show a pathological mesh size dependence even though the displacement response is converged. As a consequence, a nonlocal integral formulation is implemented in a concrete damage model to ensure mesh size independent objectivity of the local and global responses. Two numerical examples, one to a RC column with strain softening response and the other one to a RC column with post-blast response, are conducted by the nonlocal damage model, and the results indicate that both the two cases obtain objective response in the post-peak stage.

Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls (조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답)

  • Han, Ji Min;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Investigation of shear effects on the capacity and demand estimation of RC buildings

  • Palanci, Mehmet;Kalkan, Ali;Sene, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1021-1038
    • /
    • 2016
  • Considerable part of reinforced concrete building has suffered from destructive earthquakes in Turkey. This situation makes necessary to determine nonlinear behavior and seismic performance of existing RC buildings. Inelastic response of buildings to static and dynamic actions should be determined by considering both flexural plastic hinges and brittle shear hinges. However, shear capacities of members are generally neglected due to time saving issues and convergence problems and only flexural response of buildings are considered in performance assessment studies. On the other hand, recent earthquakes showed that the performance of older buildings is mostly controlled by shear capacities of members rather than flexure. Demand estimation is as important as capacity estimation for the reliable performance prediction in existing RC buildings. Demand estimation methods based on strength reduction factor (R), ductility (${\mu}$), and period (T) parameters ($R-{\mu}-T$) and damping dependent demand formulations are widely discussed and studied by various researchers. Adopted form of $R-{\mu}-T$ based demand estimation method presented in Eurocode 8 and Turkish Earthquake Code-2007 and damping based Capacity Spectrum Method presented in ATC-40 document are the typical examples of these two different approaches. In this study, eight different existing RC buildings, constructed before and after Turkish Earthquake Code-1998, are selected. Capacity curves of selected buildings are obtained with and without considering the brittle shear capacities of members. Seismic drift demands occurred in buildings are determined by using both $R-{\mu}-T$ and damping based estimation methods. Results have shown that not only capacity estimation methods but also demand estimation approaches affect the performance of buildings notably. It is concluded that including or excluding the shear capacity of members in nonlinear modeling of existing buildings significantly affects the strength and deformation capacities and hence the performance of buildings.

Post-earthquake assessment of buildings using displacement and acceleration response

  • Hsu, Ting-Yu;Pham, Quang-Vinh
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.599-609
    • /
    • 2019
  • After an earthquake, a quick seismic assessment of a structure can facilitate the recovery of operations, and consequently, improve structural resilience. Especially for facilities that play a key role in rescue or refuge efforts (e.g., hospitals and power facilities), or even economically important facilities (e.g., high-tech factories and financial centers), immediately resuming operations after disruptions resulting from an earthquake is critical. Therefore, this study proposes a prompt post-earthquake seismic evaluation method that uses displacement and acceleration measurements taken from real structural responses that resulted during an earthquake. With a prepared pre-earthquake capacity curve of a structure, the residual seismic capacity can be estimated using the residual roof drift ratio and stiffness. The proposed method was verified using a 6-story steel frame structure on a shaking table. The structure was damaged during a moderate earthquake, after which it collapsed completely during a severe earthquake. According to the experimental results, a reasonable estimation of the residual seismic capacity of structures can be performed using the proposed post-earthquake seismic evaluation method.

Evaluation of Inelastic Earthquake Response of MDOF System by Equivalent SDOF System (등가 1자유도계에 의한 다자유도 비선형 지진응답 산정)

  • Kim, Bu-Sik;Noh, Phil-Sung;Jun, Dae-Han;Song, Ho-San
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.2 s.4
    • /
    • pp.45-49
    • /
    • 2002
  • Current seismic design codes for building structures are based on the methods which can provide enough capacity to satisfy objected performance level and exactly evaluate the seismic performance of buildings. This paper is to suggest the method of inference of inelastic earthquake response obtained from MDOF system by equivalent SDOF system, and to prove the validity. The analysis results form simple model shows a good application possibility.

  • PDF

Optimal Dual Pricing and Passenger Safety Level for Cruise Revenue Management

  • Cho, Seong-Cheol;Zhang, Mengfei
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Despite the remarkable continual growth of the world cruise industry, studies have yet to be attempted on many revenue management problems in cruise operations. This paper suggests two schemes that can be easily applied to cruise revenue management: optimal dual pricing and passenger safety level. In optimal dual pricing, a pair of higher and lower prices is applied to cabin reservation through market segmentation. This scheme can be executed with a linear price-response function for the current unreserved cabins. A cruise line could benefit from this scheme to maximize reservation revenue while attaining full occupancy. The dual pricing scheme is also devised to produce only integer demands to suit real management practices. The life boat capacity is an additional service capacity unique to the cruise industry, catering to passengers' safety. The concept of passenger safety level is defined and computed for any passenger life boat capacity of a cruise ship. It can be used to evaluate the passenger safety of a cruise ship in operation, as well as to determine the number of life boat seats required for a new cruise ship. Hypothetical examples are used to illustrate the operation of these two schemes.