• Title/Summary/Keyword: Response Surface method

Search Result 1,849, Processing Time 0.03 seconds

Selection of Canonical Factors in Second Order Response Surface Models

  • Park, Sung H.;Seong K. Han
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.4
    • /
    • pp.585-595
    • /
    • 2001
  • A second-order response surface model is often used to approximate the relationship between a response factor and a set of explanatory factors. In this article, we deal with canonical analysis in response surface models. For the interpretation of the geometry of second-order response surface model, standard errors and confidence intervals for the eigenvalues of the second-order coefficient matrix play an important role. If the confidence interval for some eigenvalue includes 0 or the estimate of some eigenvalue is very small (near to 0) with respect to other eigenvalues, then we are able to delete the corresponding canonical factor. We propose a formulation of criterion which can be used to select canonical factors. This criterion is based on the IMSE(=Integrated Mean Squared Error). As a result of this method, we may approximately write the canonical factors as a set of some important explanatory factors.

  • PDF

Design Optimization of An Axial-Flow Compressor Rotor Using Response Surface Method (반응면 기법을 이용한 천음속 축류압축기의 삼차원 형상 최적설계)

  • Ahn, Chan-Sol;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.155-162
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It is also found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

Optimization of A Rotor Profile in An Axial Compressor Using Response Surface Method (반응표면법을 이용한 축류 압축기의 동익형상 최적설계)

  • Song, You-Joon;Lee, Jeong-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.16-20
    • /
    • 2016
  • Design optimization of a transonic compressor rotor(NASA rotor 37) was carried out using response surface method(RSM) which is one of the optimization methods. A numerical simulation was conducted using ANSYS CFX by solving three-dimensional Reynolds-averaged Navier Stokes(RANS) equations. Response surfaces that were based on the results of the design of experiment(DOE) techniques were used to find an optimal shape of blade which has the maximum aerodynamic performance. Two objective functions, viz., the adiabatic efficiency and the loss coefficient were selected with three design configurations to optimize the blade shape. As a result, the efficiency of the optimized blade is found to be increased.

Statistical Modeling of the Pretilt Angle Control in Nematic Liquid Crystal using In-situ Photoalignment Method on Plastic Substrate

  • Kang, Hee-Jin;Lee, Jung-Hwan;Yun, Il-Gu;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.145-148
    • /
    • 2006
  • In this study, the response surface modeling of the pretilt angle control using in-situ photoalignment method with oblique UV exposure .on plastic substrate is investigated. The pretilt angle is the main factor to determine the alignment of the liquid crystal display. The response surface model is used to analyze the variation of the pretilt angle on the various process conditions. Heating temperature and UV exposure time are considered as input factors. The liquid crystal (LC) pretilt angle increased with increasing heating temperature and UV exposure time. The analysis of variance is used to analyze the statistical significance and the effect plots are also investigated to examine the relationship between the process parameters and the response.

Reliability Analysis and Optimization Considering Dynamic Characteristics of Vehicle Torsion Beam (차량 토션빔의 동적 특성을 고려한 신뢰성 분석 및 최적설계)

  • 이춘승;임홍재;이상범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.813-817
    • /
    • 2002
  • This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

  • PDF

A Robust and Computationally Efficient Optimal Design Algorithm of Electromagnetic Devices Using Adaptive Response Surface Method

  • Zhang, Yanli;Yoon, Hee-Sung;Shin, Pan-Seok;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.207-212
    • /
    • 2008
  • This paper presents a robust and computationally efficient optimal design algorithm for electromagnetic devices by combining an adaptive response surface approximation of the objective function and($1+{\lambda}$) evolution strategy. In the adaptive response surface approximation, the design space is successively reduced with the iteration, and Pareto-optimal sampling points are generated by using Latin hypercube design with the Max Distance and Min Distance criteria. The proposed algorithm is applied to an analytic example and TEAM problem 22, and its robustness and computational efficiency are investigated.

Risk Assessment for the Failure of an Arch Bridge System Based upon Response Surface Method(I): Component Reliability (응답면 기법에 의한 아치교량 시스템의 붕괴 위험성평가(I): 요소신뢰성)

  • Cho, Tae-Jun;Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.74-81
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method(RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method.

Risk Assessment for a Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 교량시스템의 위험성평가)

  • Cho, Tae-Jun;Moon, Jae-Woo;Kim, Jong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.295-300
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to be obtained by Monte-Carlo Simulations or by First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is changed into parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significant]y reduced time and efforts compared with the previous permutation method or system reliability analysis method.

  • PDF

ReliabIlity analysis of containment building subjected to earthquake load using response surface method

  • Lee, Seong Lo
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2006
  • The seismic safety of reinforced concrete containment building can be evaluated by probabilistic analysis considering randomness of earthquake, which is more rational than deterministic analysis. In the safety assessment of earthquake-resistant structures by the deterministic theory, it is not easy to consider the effects of random variables but the reliability theory and random vibration theory are useful to assess the seismic safety with considering random effects. The reliability assessment of reinforced concrete containment building subjected to earthquake load includes the structural analysis considering random variables such as load, resistance and analysis method, the definition of limit states and the reliability analysis. The reliability analysis procedure requires much time and labor and also needs to get the high confidence in results. In this study, random vibration analysis of containment building is performed with random variables as earthquake load, concrete compressive strength, modal damping ratio. The seismic responses of critical elements of structure are approximated at the most probable failure point by the response surface method. The response surface method helps to figure out the quantitative characteristics of structural response variability. And the limit state is defined as the failure surface of concrete under multi-axial stress, finally the limit state probability of failure can be obtained simply by first-order second moment method. The reliability analysis for the multiaxial strength limit state and the uniaxial strength limit state is performed and the results are compared with each other. This study concludes that the multiaxial failure criterion is a likely limit state to predict concrete failure strength under combined state of stresses and the reliability analysis results are compatible with the fact that the maximum compressive strength of concrete under biaxial compression state increases.

A Study on Centrifugal Compressor Design Optimization for Increasing Surge Margin (서지 마진 증가를 고려한 원심 압축기 설계 최적화)

  • Chai, Jae-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.2
    • /
    • pp.38-45
    • /
    • 2008
  • This study presents a numerical procedure to optimize the compressor design to increase the surge margin of compressor with response surface method (RSM). The Box-Behnken design method is used to reduce the number of calculation for fitting the second-order response surface. In order to consider the increase of surge margin during numerical optimization without any calculation at the surge point, the slope of compressor characteristic curve at the design point is suggested as an objective function in the present optimization problem. Mean line performance analysis method is used to get the design and off-design characteristic curves of centrifugal compressor. The impeller exit angle, impeller exit height and impeller radius are chosen as design variables. The optimum shapes show the increase of surge margin for the surge margin optimization and increase of efficiency for the efficiency optimization in comparison with an initial shape.