• 제목/요약/키워드: Respiratory challenges

검색결과 41건 처리시간 0.025초

Changes in Breast-tumor Blood Flow in Response to Hypercapnia during Chemotherapy with Laser Speckle Flowmetry

  • Kim, Hoonsup;Lee, Youngjoo;Lee, Songhyun;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.555-565
    • /
    • 2019
  • Development of a biomarker for predicting tumor-treatment efficacy is a matter of great concern, to reduce time, medical expense, and effort in oncology therapy. In a preclinical study, we hypothesized that the blood-flow parameter based on laser speckle flowmetry (LSF) could be a potential indicator to estimate the efficacy of breast-cancer treatment. To verify this hypothesis, a 13762-MAT-B-III rat breast tumor was grown in a dorsal skinfold window chamber applied to a nude mouse, and the change in blood flow rate (BFR) - or the speckle flow index (SFI) is used together as the same meaning in this manuscript - was longitudinally monitored during tumor growth and metronomic cyclophosphamide treatment. Based on the daily LSF angiogram, several BFR parameters (baseline SFI, normalized SFI, and △rBFR) were compared to tumor size in the normal, treated, and untreated tumor groups. Despite the incomplete tumor treatment, we found that the daily changes in all BFR parameters tended to have partially positive correlation with tumor size. Moreover, we observed that the changes in baseline SFI and normalized SFI responded one day earlier than the tumor shrinkage during chemotherapy. However, daily variations in the hypercapnia-induced △rBFR lagged tumor shrinkage by one day. This study would contribute not only to evaluating tumor vascular response to treatment, but also to monitoring blood-flow-mediated diseases (in brain, skin, and retina) by using LSF in preclinical settings.

High-throughput Gene Expression Analysis to Investigate Host-pathogen Interaction in Avian Coccidiosis

  • Lillehoj Hyun, S.
    • 한국가금학회지
    • /
    • 제34권1호
    • /
    • pp.77-83
    • /
    • 2007
  • Poultry products including meat and eggs constitute a major protein source in the American diet and disease-causing pathogens represent major challenges to the poultry industry. More than 95% of pathogens enter the host through the mucosal surfaces of the respiratory, digestive and reproductive tracts and over the past few decades, the two main mechanisms used to control diseases have been the use of vaccines and antibiotics. However, in the poultry industry, there are mounting concerns over the ability of current vaccines to adequately protect against emerging hyper-virulent strains of pathogens and a lack of suitable, cost effective adjuvants. Thorough investigation of the immunogenetic responses involved in host-pathogen interactions will lead to the development of new and effective strategies for improving poultry health, food safety and the economic viability of the US poultry industry. In this paper, I describe the development of immunogenomic and proteomic tools to fundamentally determine and characterize the immunological mechanisms of the avian host to economically significant mucosal pathogens such as Eimeria. Recent completion of poultry genome sequencing and the development of several tissue-specific cDNA libraries in chickens are facilitating the rapid application of functional immunogenomics in the poultry disease research. Furthermore, research involving functional genomics, immunology and bioinformatics is providing novel insights into the processes of disease and immunity to microbial pathogens at mucosal surfaces. In this presentation, a new strategy of global gene expression using avian macrophage (AMM) to characterize the multiple pathways related to the variable immune responses of the host to Eimeria is described. This functional immunogenomics approach will increase current understanding of how mucosal immunity to infectious agents operates, and how it may be enhanced to enable the rational development of new and effective strategies against coccidiosis and other mucosal pathogens.

양식 조피볼락(Sebastes schlegeli) 치어의 대량폐사 원인인 비브리오병에 관하여 (Vibro ordalii, the causative agent of massive mortality in cultured rockfish(Sebastes schlegeli) larvae)

  • 박성우;김영길;최동림
    • 한국어병학회지
    • /
    • 제9권2호
    • /
    • pp.137-145
    • /
    • 1996
  • 1995년과 1996년 충남의 조피볼락 종묘생산장에서 발생한 대량폐사의 원인을 조사하였다. 병어로 부터 분리된 원인균은 생화학적 및 생물학적 특성에 의해 Vibrio ordalii로 동정되었다. 당년생과 일년생 조피볼락에 대한 병원성 조사를 위하여 수온 $18^{\circ}C$$25^{\circ}C$에서의 감염실험을 실시한 결과 $25^{\circ}C$의 일년생 시험어에 비해 $18^{\circ}C$의 당년생 치어가 훨씬 높은 비율로 감염되었다. 이러한 결과는 양어장에서의 질병발생예를 포함한 현장조사 결과와 일치하고 있었다. 병어의 병리조직학적 관찰결과 아가미는 2차새변과 뇌의 모세혈관의 확장, 호흡상피의 박리, 간실질의 위축, 신장의 괴사가 관찰되었고 소화관계는 뚜렷한 병변이 없었다.

  • PDF

자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발 (Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device.)

  • 박현문;이정철;김병수
    • 한국전자통신학회논문지
    • /
    • 제14권3호
    • /
    • pp.619-626
    • /
    • 2019
  • 나노 공정기술을 이용한 반도체 및 회로기술의 발전은 의료용 삽입형 기기(MID)의 소형화, 감도, 수명, 신뢰성을 더욱 향상했지만, 최근 MID의 지속적인 동작을 위한 전원의 지속적인 제공 여부가 중요한 도전과제 중 하나이다. 이러한 이유로 신체 내에서 다양한 생체 역학 에너지를 활용하는 자체 전원 이식형 의료기기가 최근에 많이 연구되고 있다. 본 논문에서는 TENG를 이용한 자가발전을 통해 재충전이 가능한 심장박동기를 개발하였다. 그리고 우리는 대형동물의 동작에 따라 삽입된 심장박동기에 내장된 TENG의 발전을 검증하였다. 동물의 움직임으로부터 수집되는 전력은 2.47V로 심장박동기에 센싱을 위해 필요한 전압(1.35V)보다 높은 전원을 획득할 수 있었다.

Can Panax ginseng help control cytokine storm in COVID-19?

  • Choi, Jong Hee;Lee, Young Hyun;Kwon, Tae Woo;Ko, Seong-Gyu;Nah, Seung-Yeol;Cho, Ik-Hyun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.337-347
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) is currently a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 are directly associated with hyper-activation of innate immune response that excessively produce pro-inflammatory cytokines and induce cytokine storm, leading to multi-organ-failure and significant morbidity/mortality. Currently, several antiviral drugs such as Paxlovid (nirmatrelvir and ritonavir) and molnupiravir are authorized to treat mild to moderate COVID-19, however, there are still no drugs that can specifically fight against challenges of SARS-CoV-2 variants. Panax ginseng, a medicinal plant widely used for treating various conditions, might be appropriate for this need due to its anti-inflammatory/cytokine/viral activities, fewer side effects, and cost efficiency. To review Panax ginseng and its pharmacologically active-ingredients as potential phytopharmaceuticals for treating cytokine storm of COVID-19, articles that reporting its positive effects on the cytokine production were searched from academic databases. Experimental/clinical evidences for the effectiveness of Panax ginseng and its active-ingredients in preventing or mitigating cytokine storm, especially for the cascade of cytokine storm, suggest that they might be beneficial as an adjunct treatment for cytokine storm of COVID-19. This review may provide a new approach to discover specific medications using Panax ginseng to control cytokine storm of COVID-19.

A Comprehensive Analysis of Deformable Image Registration Methods for CT Imaging

  • Kang Houn Lee;Young Nam Kang
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.303-314
    • /
    • 2023
  • This study aimed to assess the practical feasibility of advanced deformable image registration (DIR) algorithms in radiotherapy by employing two distinct datasets. The first dataset included 14 4D lung CT scans and 31 head and neck CT scans. In the 4D lung CT dataset, we employed the DIR algorithm to register organs at risk and tumors based on respiratory phases. The second dataset comprised pre-, mid-, and post-treatment CT images of the head and neck region, along with organ at risk and tumor delineations. These images underwent registration using the DIR algorithm, and Dice similarity coefficients (DSCs) were compared. In the 4D lung CT dataset, registration accuracy was evaluated for the spinal cord, lung, lung nodules, esophagus, and tumors. The average DSCs for the non-learning-based SyN and NiftyReg algorithms were 0.92±0.07 and 0.88±0.09, respectively. Deep learning methods, namely Voxelmorph, Cyclemorph, and Transmorph, achieved average DSCs of 0.90±0.07, 0.91±0.04, and 0.89±0.05, respectively. For the head and neck CT dataset, the average DSCs for SyN and NiftyReg were 0.82±0.04 and 0.79±0.05, respectively, while Voxelmorph, Cyclemorph, and Transmorph showed average DSCs of 0.80±0.08, 0.78±0.11, and 0.78±0.09, respectively. Additionally, the deep learning DIR algorithms demonstrated faster transformation times compared to other models, including commercial and conventional mathematical algorithms (Voxelmorph: 0.36 sec/images, Cyclemorph: 0.3 sec/images, Transmorph: 5.1 sec/images, SyN: 140 sec/images, NiftyReg: 40.2 sec/images). In conclusion, this study highlights the varying clinical applicability of deep learning-based DIR methods in different anatomical regions. While challenges were encountered in head and neck CT registrations, 4D lung CT registrations exhibited favorable results, indicating the potential for clinical implementation. Further research and development in DIR algorithms tailored to specific anatomical regions are warranted to improve the overall clinical utility of these methods.

Pig production in Latin America

  • Luciano Roppa;Marcos Elias Duarte;Sung Woo Kim
    • Animal Bioscience
    • /
    • 제37권4_spc호
    • /
    • pp.786-793
    • /
    • 2024
  • Latin America is a culturally, geographically, politically, and economically diverse region. Agriculture in Latin America is marked by a remarkable diversity of production systems, reflecting various agroecological zones, farm sizes, and technological levels. In the last decade, the swine industry increased by 30.6%, emerging as a great contributor to food security and economic development in Latin America. Brazil and Mexico dominate the pig production landscape, together accounting for 70% of sow inventory in the region. The swine industry in Latin America is predominantly comprised of small and medium-sized farms, however, in the past 30 years, the number of pig producers in Brazil dropped by 78%, whereas pork production increased by 326%. Similar to the global pork industry, the growing demand for pork, driven by population growth and changing dietary habits, presents an opportunity for the industry with an expected growth of 16% over the next decade. The export prospects are promising, however subject to potential disruptions from global market conditions and shifts in trade policies. Among the challenges faced by the swine industry, disease outbreaks, particularly African Swine Fever (ASF), present significant threats, necessitating enhanced biosecurity and surveillance systems. In 2023, ASF was reported to the Dominican Republic and Haiti, Porcine Reproductive and Respiratory Syndrome (PRRS) in Mexico, Costa Rica, the Dominican Republic, Colombia, and Venezuela, and Porcine Epidemic Diarrhea (PED) in Mexico, Peru, the Dominican Republic, Colombia, and Ecuador. Additionally, feed costs, supply chain disruptions, and energy expenses have affected mainly the smaller and less efficient producers. The swine industry is also transitioning towards more sustainable and environmentally friendly practices, including efficient feed usage, and precision farming. Ensuring long-term success in the swine industry in Latin America requires a holistic approach that prioritizes sustainability, animal welfare, and consumer preferences, ultimately positioning the industry to thrive in the evolving global market.

나노웹 섬유형 전극 인터페이스와 KHU Mark2 EIT 시스템을 이용한 생체신호 동기 도전율 영상법 (Gated Conductivity Imaging using KHU Mark2 EIT System with Nano-web Fabric Electrode Interface)

  • 김태의;김현지;위헌;오동인;우응제
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.39-46
    • /
    • 2012
  • Electrical impedance tomography(EIT) can produce functional images with conductivity distributions associated with physiological events such as cardiac and respiratory cycles. EIT has been proposed as a clinical imaging tool for the detection of stroke and breast cancer, pulmonary function monitoring, cardiac imaging and other clinical applications. However EIT still suffers from technical challenges such as the electrode interface, hardware limitations, lack of animal or human trials, and interpretation of conductivity variations in reconstructed images. We improved the KHU Mark2 EIT system by introducing an EIT electrode interface consisting of nano-web fabric electrodes and by adding a synchronized biosignal measurement system for gated conductivity imaging. ECG and respiration signals are collected to analyze the relationship between the changes in conductivity images and cardiac activity or respiration. The biosignal measurement system provides a trigger to the EIT system to commence imaging and the EIT system produces an output trigger. This EIT acquisition time trigger signal will also allow us to operate the EIT system synchronously with other clinical devices. This type of biosignal gated conductivity imaging enables capture of fast cardiac events and may also improve images and the signal-to-noise ratio (SNR) by using signal averaging methods at the same point in cardiac or respiration cycles. As an example we monitored the beat by beat cardiac-related change of conductivity in the EIT images obtained at a common state over multiple respiration cycles. We showed that the gated conductivity imaging method reveals cardiac perfusion changes in the heart region of the EIT images on a canine animal model. These changes appear to have the expected timing relationship to the ECG and ventilator settings that were used to control respiration. As EIT is radiation free and displays high timing resolution its ability to reveal perfusion changes may be of use in intensive care units for continuous monitoring of cardiopulmonary function.

Pierre Robin Sequence 환아의 전신마취 하 치과 치료 증례 보고 (DENTAL TREATMENT OF A PATIENT WITH PIERRE ROBIN SEQUENCE UNDER GENERAL ANESTHESIA: A CASE REPORT)

  • 이소피아;송지수;신터전;김영재;김정욱;장기택;이상훈;현홍근
    • 대한장애인치과학회지
    • /
    • 제15권1호
    • /
    • pp.55-59
    • /
    • 2019
  • PRS는 소하악증, 설하수증, 구개열의 세가지 임상적 특징을 갖는 질환으로 상기도 폐쇄로 인한 호흡곤란, 섭식장애를 나타낸다. PRS 환아는 치과 치료 시 호흡 관리에 대한 고려가 필요하고 또한 다양한 증후군이 동반될 수 있어 치과 치료시 전신적인 상태에 대한 고려가 필요하다. 본 증례에서는 다발성 치아우식증을 주소로 내원한 PRS 환자에 대한 보고로 기도 확보 및 유지의 어려움이 예상되었으나 치과적 치료를 전신마취 하 성공적으로 시행되었다.

국내 중증 급성 호흡기 증후군 코로나 바이러스의 검사실 내 진단: 현재, 한계점 그리고 직면한 과제 (Laboratory Diagnosis of Coronavirus Disease 19 (COVID-19) in Korea: Current Status, Limitation, and Challenges)

  • 송기선;이유림;김성민;김원태;최정원;유다현;유정영;장경태;이재왕;전진현
    • 대한임상검사과학회지
    • /
    • 제52권3호
    • /
    • pp.284-295
    • /
    • 2020
  • 2019년 12월, 중국 후베이성 우한시에서 COVID-19환자가 처음으로 보고되었다. 그 이후 국내에서 신종 코로나 바이러스에 의해 야기된 중증 급성 호흡기 증후군 환자가 급격하게 증가하였다. 이러한 새로운 변종 바이러스는 기침, 인후통, 비루, 호흡곤란, 폐렴 및 기타 폐질환을 유발한다. 중증 급성 호흡기 증후군 코로나 바이러스 2는 RNA바이러스로, 실시간 역전사효소 중합효소 연쇄반응을 통한 분자진단 검사가 COVID-19의 진단에 폭 넓게 사용되고 있다. 국내 질병관리본부와 식품의약품 안전처의 긴급 사용 허가 승인에 따라, 건강한 사람과 COVID-19 환자로부터 검체를 채취하여 진단검사의학적인 방법을 통해 진단을 수행하고 있다. 기존에 출판된 많은 문헌 고찰을 통해, 본 연구에서는 역학, 증상 및 질병관리본부의 승인을 받은 현재의 검사실 내 COVID-19 분자 진단 방법, 분자 진단 검사와 혈청학적 진단의 차이, 임상 검체 가이드라인 등을 다시 한 번 확인하고자 하였다. 추가적으로 본 연구를 통해 국내 의료기관 내 의료종사자 및 임상병리사들의 병원 감염을 예방하고자 생물학적 안전에 관한 가이드라인을 확인하였다. 국내 임상병리사들의 경험과 그로부터 얻은 교훈을 통해 국내외 COVID-19 팬데믹 상황으로부터 국민의 안전을 지킬 수 있는 단초를 제공할 수 있을 것이라 사료된다.