DOI QR코드

DOI QR Code

Changes in Breast-tumor Blood Flow in Response to Hypercapnia during Chemotherapy with Laser Speckle Flowmetry

  • Kim, Hoonsup (Department of Biomedical Science & Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Lee, Youngjoo (Department of Biomedical Science & Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology) ;
  • Lee, Songhyun (Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Jae Gwan (Department of Biomedical Science & Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology)
  • Received : 2019.07.10
  • Accepted : 2019.10.23
  • Published : 2019.12.25

Abstract

Development of a biomarker for predicting tumor-treatment efficacy is a matter of great concern, to reduce time, medical expense, and effort in oncology therapy. In a preclinical study, we hypothesized that the blood-flow parameter based on laser speckle flowmetry (LSF) could be a potential indicator to estimate the efficacy of breast-cancer treatment. To verify this hypothesis, a 13762-MAT-B-III rat breast tumor was grown in a dorsal skinfold window chamber applied to a nude mouse, and the change in blood flow rate (BFR) - or the speckle flow index (SFI) is used together as the same meaning in this manuscript - was longitudinally monitored during tumor growth and metronomic cyclophosphamide treatment. Based on the daily LSF angiogram, several BFR parameters (baseline SFI, normalized SFI, and △rBFR) were compared to tumor size in the normal, treated, and untreated tumor groups. Despite the incomplete tumor treatment, we found that the daily changes in all BFR parameters tended to have partially positive correlation with tumor size. Moreover, we observed that the changes in baseline SFI and normalized SFI responded one day earlier than the tumor shrinkage during chemotherapy. However, daily variations in the hypercapnia-induced △rBFR lagged tumor shrinkage by one day. This study would contribute not only to evaluating tumor vascular response to treatment, but also to monitoring blood-flow-mediated diseases (in brain, skin, and retina) by using LSF in preclinical settings.

Keywords

References

  1. R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer statistics, 2019," Ca-Cancer J. Clin. 69, 7-34 (2019). https://doi.org/10.3322/caac.21551
  2. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Yu, A. Durkin, D. Hsiang, R. Mehta, J. Butler, A. Cerussi, B. J. Tromberg, and A. G. Yodh, "Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy," J. Biomed. Opt. 12, 051903 (2007). https://doi.org/10.1117/1.2798595
  3. S. Ueda and T. Saeki, "Early therapeutic prediction based on tumor hemodynamic response imaging: clinical studies in breast cancer with time-resolved diffuse optical spectroscopy," Appl. Sci. 9, 3 (2019). https://doi.org/10.3390/app9010003
  4. S. Lee and J. G. Kim, "Breast tumor hemodynamic response during a breath-hold as a biomarker to predict chemotherapeutic efficacy: preclinical study," J. Biomed. Opt. 23, 048001 (2018).
  5. H. S. Yazdi, T. D. O'Sullivan, A. Leproux, B. Hill, A. Durkin, S. Telep, J. Lam, S. S. Yazdi, A. M. Police, R. M. Carroll, F. J. Combs, T. Stromberg, A. G. Yodh, and B. J. Tromberg, "Mapping breast cancer blood flow index, composition, and metabolism in a human subject using combined diffuse optical spectroscopic imaging and diffuse correlation spectroscopy," J. Biomed. Opt. 22, 045003 (2017). https://doi.org/10.1117/1.JBO.22.4.045003
  6. H. Kim, T. J. Eom, and J. G. Kim, "Vascular morphometric changes during tumor growth and chemotherapy in a murine mammary tumor model using OCT angiography: a preliminary study," Curr. Opt. Photon. 3, 54-65 (2019). https://doi.org/10.3807/COPP.2019.3.1.054
  7. X. Zhang, Y. Lin, and R. J. Gillies, "Tumor pH and Its Measurement," J. Nucl. Med. 51, 1167-1170 (2010). https://doi.org/10.2967/jnumed.109.068981
  8. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, "In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy," J. Biomed. Opt. 11, 044005 (2006). https://doi.org/10.1117/1.2337546
  9. J. Cochran, "Diffuse optical biomarkers of breast cancer," Ph. D. Dissertation, University of Pennsylvania, Pennsylvania (2018).
  10. C. Cappelli, I. Pirola, E. Gandossi, F. Marini, A. Cristiano, C. Casella, D. Lombardi, B. Agosti, A. Ferlin, and M. Castellano, "Ultrasound microvascular blood flow evaluation: a new tool for the management of thyroid nodule?," Int. J. Endocrinol. 2019, 7874890 (2019). https://doi.org/10.1155/2019/7874890
  11. D. Mustafi, A. Leinroth, X. Fan, E. Markiewicz, M. Zamora, J. Mueller, S. D. Conzen, and G. S. Karczmar, "Magnetic resonance angiography shows increased arterial blood supply associated with murine mammary cancer," Int. J. Biomed. Imaging 2019, 5987425 (2019). https://doi.org/10.1155/2019/5987425
  12. M. R. Jochumsen, L. P. Tolbod, B. G. Pedersen, M. M. Nielsen, S. Hoyer, J. Frokiær, M. Borre, K. Bouchelouche, and J. Sorensen, "Quantitative tumor perfusion imaging with 82Rubidium-PET/CT in prostate cancer - analytical and clinical validation," J. Nucl. Med. 118, 219188 (2019).
  13. T. Pedanekar, R. Kedare, and A. Sengupta, "Monitoring tumor progression by mapping skin microcirculation with laser Doppler flowmetry," Lasers Med. Sci. 34, 61-77 (2019). https://doi.org/10.1007/s10103-018-2600-z
  14. G. Ramirez, A. R. Proctor, K. W. Jung, T. T. Wu, S. Han, R. R. Adams, J. Ren, D. K. Byun, K. S. Madden, E. B. Brown, T. H. Foster, P. Farzam, T. Durduran, and R. Choe, "Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy," Biomed. Opt. Express 7, 3610-3630 (2016). https://doi.org/10.1364/BOE.7.003610
  15. C. Chen, K. H. Y. Cheng, R. Jakubovic, J. Jivraj, J. Ramjist, R. Deorajh, W. Gao, E. Barnes, L. Chin, and V. X. D. Yang, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part V): optimal utilization of multi-beam scanning for Doppler and speckle variance microvascular imaging," Opt. Express 25, 7761-7777 (2017). https://doi.org/10.1364/OE.25.007761
  16. O. Yang, D. J. Cuccia, and B. Choi, "Real-time blood flow visualization using the graphics processing unit," J. Biomed. Opt. 16, 016009 (2011). https://doi.org/10.1117/1.3528610
  17. S. C. Gnyawali, K. Blum, D. Pal, S. Ghatak, S. Khanna, S. Roy, and C. K. Sen, "Retooling laser speckle contrast analysis algorithm to enhance non-invasive high resolution laser speckle functional imaging of cutaneous microcirculation," Sci. Rep. 7, 41048 (2017). https://doi.org/10.1038/srep41048
  18. A. Nadort, K. Kalkman, T. G. V. Leeuwen, and D. J. Faber, "Quantitative blood flow velocity imaging using laser speckle flowmetry," Sci. Rep. 6, 25258 (2016). https://doi.org/10.1038/srep25258
  19. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, "Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging," Opt. Lett. 33, 2886-2888 (2008). https://doi.org/10.1364/OL.33.002886
  20. A. Edelstein, N. Amodaj, K. Hoover, R. Vale, and N. Stuurman, "Computer control of microscopes using ${\mu}Manager$," Curr. Protoc. Mol. Biol. 92, 14.20.1-14.20.17 (2010).
  21. B. Choi, J. C. Ramirez-San-Juan, J. Lotfi, and J. S. Nelson, "Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics," J. Biomed. Opt. 11, 041129 (2006). https://doi.org/10.1117/1.2341196
  22. H. Cheng and T. Q. Duong, "Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging," Opt. Lett. 32, 2188-2190 (2007). https://doi.org/10.1364/OL.32.002188
  23. J. Pan, L. Cheng, X. Bi, X. Zhang, S. Liu, X. Bai, F. Li, and A. Z. Zhao, "Elevation of ${\omega}$-3 polyunsaturated fatty acids attenuates PTEN-deficiency induced endometrial cancer development through regulation of COX-2 and PGE2 production," Sci. Rep. 5, 14958 (2015). https://doi.org/10.1038/srep14958
  24. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, "Impact of velocity distribution assumption on simplified laser speckle imaging equation," Opt. Express 16, 3197-3203 (2008). https://doi.org/10.1364/OE.16.003197
  25. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). https://doi.org/10.1097/00004647-200103000-00002
  26. R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20, 2097-2107 (1981). https://doi.org/10.1364/AO.20.002097
  27. J. K. Meisner, S. Sumer, K. P. Murrell, T. J. Higgins, and R. J. Price, "Laser speckle flowmetry method for measuring spatial and temporal hemodynamic alterations throughout large microvascular networks," Microcirculation 19, 619-631 (2012). https://doi.org/10.1111/j.1549-8719.2012.00197.x
  28. S. Lee, H. Jeong, M. Seong, and J. G. Kim, "Change of tumor vascular reactivity during tumor growth and postchemotherapy observed by near-infrared spectroscopy," J. Biomed. Opt. 22, 121603 (2017). https://doi.org/10.1117/1.JBO.22.12.121603
  29. T. J. Dunn, R. D. Braun, W. E. Rhemus, G. L. Rosner, T. W. Secomb, G. M. Tozer, D. J. Chaplin, and M. W. Dewhirst, "The effects of hyperoxic and hypercarbic gases on tumour blood flow," Br. J. Cancer 80, 117-126 (1999). https://doi.org/10.1038/sj.bjc.6690330
  30. M. Neeman, H. Dafni, O. Bukhari, R. D. Braun, and M. W. Dewhirst, "In vivo BOLD contrast MRI mapping of subcutaneous vascular function and maturation: validation by intravital microscopy," Magn. Reson. Med. 45, 887-898 (2001). https://doi.org/10.1002/mrm.1118
  31. R. Abramovitch, H. Dafni, E. Smouha, L. E. Benjamin, and M. Neeman, "In vivo prediction of vascular susceptibility to vascular endothelial growth factor withdrawal: magnetic resonance imaging of C6 rat glioma in nude mice," Cancer Res. 59, 5012-5016 (1999).
  32. R. K. Jain, "Determinants of tumor blood flow: a review," Cancer Res. 48, 2641-2658 (1988).
  33. D. D. Duncan and S. J. Kirkpatrick, "Can laser speckle flowmetry be made a quantitative tool?," J. Opt. Soc. Am. A 25, 2088-2094 (2008). https://doi.org/10.1364/JOSAA.25.002088
  34. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).
  35. M. N. Chonghaile, B. Higgins, and J. G. Laffey, "Permissive hypercapnia: role in protective lung ventilatory strategies," Curr. Opin. Crit. Care 11, 56-62 (2005). https://doi.org/10.1097/00075198-200502000-00009
  36. W. J. Aston, D. E. Hope, A. K. Nowak, B. W. Robinson, R. A. Lake, and W. J. Lesterhuis, "A systematic investigation of the maximum tolerated dose of cytotoxic chemotherapy with and without supportive care in mice," BMC Cancer 17, 684 (2017). https://doi.org/10.1186/s12885-017-3677-7
  37. M. A. Davis, L. Gagnon, D. A. Boas, and A. K. Dunn, "Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex," Biomed. Opt. Express 7, 759-775 (2016). https://doi.org/10.1364/BOE.7.000759
  38. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, "Robust flow measurement with multi-exposure speckle imaging," Opt. Express 16, 1975-1989 (2008). https://doi.org/10.1364/OE.16.001975
  39. W. Heeman, W. Steenbergen, G. M. van Dam, and E. C. Boerma, "Clinical applications of laser speckle contrast imaging: a review," J. Biomed. Opt. 24, 080901 (2019).
  40. A. Rauh, D. Henn, S. Nagel, A. Bigdeli, U. Kneser, and C. Hirche, "Continuous video-rate laser speckle imaging for intra- and postoperative cutaneous perfusion imaging of free flaps," J. Reconstr. Microsurg. 35, 489-498 (2019). https://doi.org/10.1055/s-0039-1681076
  41. M. Chen, D. Wen, S. Huang, S. Gui, Z. Zhang, J. Lu, and P. Li, "Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy," Opt. Lett. 43, 5627-5630 (2018). https://doi.org/10.1364/ol.43.005627
  42. C.-W. Chen, T. R. Blackwell, R. Naphas, P. T. Winnard JR, V. Raman, K. Glunde, and Y. Chen, "Development of needle-based microendoscopy for fluorescence molecular imaging of breast tumor models," J. Innov. Opt. Health Sci. 2, 343-352 (2009). https://doi.org/10.1142/S1793545809000747
  43. D. Shemesh, N. Bokobza, K. Rozenberg, T. Rosenzweig, and D. Abookasis, "Decreased cerebral blood flow and hemodynamic parameters during acute hyperglycemia in mice model observed by dual-wavelength speckle imaging," J. Biophotonics 12, e201900002 (2019).
  44. A. J. Moy, S. M. White, E. S. Indrawan, J. Lotfi, M. J. Nudelman, S. J. Costantini, N. Agarwal, W. Jia, K. M. Kelly, B. S. Sorg, and B. Choi, "Wide-field functional imaging of blood flow and hemoglobin oxygen saturation in the rodent dorsal window chamber," Microvasc. Res. 82, 199-209 (2011). https://doi.org/10.1016/j.mvr.2011.07.004
  45. J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadzic, S. A. Carp, J. Lee, and D. A. Boas, "Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography," J. Biophotonics 11, e201700070 (2018). https://doi.org/10.1002/jbio.201700070
  46. S. Dziennis, J. Qin, L. Shi, and R. K. Wang, "Macro-tomicro cortical vascular imaging underlies regional differences in ischemic brain," Sci. Rep. 5, 10051 (2015). https://doi.org/10.1038/srep10051