• 제목/요약/키워드: Resources-based Learning

Search Result 856, Processing Time 0.025 seconds

Effective E-Learning Practices by Machine Learning and Artificial Intelligence

  • Arshi Naim;Sahar Mohammed Alshawaf
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.209-214
    • /
    • 2024
  • This is an extended research paper focusing on the applications of Machine Learing and Artificial Intelligence in virtual learning environment. The world is moving at a fast pace having the application of Machine Learning (ML) and Artificial Intelligence (AI) in all the major disciplines and the educational sector is also not untouched by its impact especially in an online learning environment. This paper attempts to elaborate on the benefits of ML and AI in E-Learning (EL) in general and explain how King Khalid University (KKU) EL Deanship is making the best of ML and AI in its practices. Also, researchers have focused on the future of ML and AI in any academic program. This research is descriptive in nature; results are based on qualitative analysis done through tools and techniques of EL applied in KKU as an example but the same modus operandi can be implemented by any institution in its EL platform. KKU is using Learning Management Services (LMS) for providing online learning practices and Blackboard (BB) for sharing online learning resources, therefore these tools are considered by the researchers for explaining the results of ML and AI.

Analyzing the effect of software education applying problem-solving learning (문제해결학습을 적용한 소프트웨어 교육 효과 분석)

  • Lee, Youngseok
    • Journal of Digital Convergence
    • /
    • v.16 no.3
    • /
    • pp.95-100
    • /
    • 2018
  • The future society will be identify various problem situations accurately and the ability to solve problems effectively using computing technology become more important. Based on this background, an education of future human resources based on computational thinking as well as a problem-solving ability are important in university education. Therefore, in this paper, we have analyzed the effects of software education to improve computational thinking based on problem-solving learning. We have found that there is a significant difference between the interest of the students and their learning and academic achievements. Therefore, based on the understanding of the learning motivation and method, if the problem-solving learning is conducted in real-life scenarios suitable for the level of the student, it can be possible to induce the interest of the students and improve their computational thinking ability.

A Design and Implementation of Computer-based Test System (컴퓨터기반 시험 시스템 설계 및 구축)

  • Cho Sung-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • E-learning is the application of e-business technology and services to teaching and learning. It use of new multimedia technologies and Internet to improved the qualify of learning by facilitating access to remote resources and services. In this paper, we show a computer-based test system, which is carefully designed and implemented. The system consists of a contents delivery mechanism, computer-adaptive test algorithm, and review engine. In this papepr, we describe what are points to be considered when design and implementing a computer-based test system. In addition, this paper shows how to control the bias value for computer-adaptive algorithm using real data.

  • PDF

Multicast Tree Generation using Meta Reinforcement Learning in SDN-based Smart Network Platforms

  • Chae, Jihun;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3138-3150
    • /
    • 2021
  • Multimedia services on the Internet are continuously increasing. Accordingly, the demand for a technology for efficiently delivering multimedia traffic is also constantly increasing. The multicast technique, that delivers the same content to several destinations, is constantly being developed. This technique delivers a content from a source to all destinations through the multicast tree. The multicast tree with low cost increases the utilization of network resources. However, the finding of the optimal multicast tree that has the minimum link costs is very difficult and its calculation complexity is the same as the complexity of the Steiner tree calculation which is NP-complete. Therefore, we need an effective way to obtain a multicast tree with low cost and less calculation time on SDN-based smart network platforms. In this paper, we propose a new multicast tree generation algorithm which produces a multicast tree using an agent trained by model-based meta reinforcement learning. Experiments verified that the proposed algorithm generated multicast trees in less time compared with existing approximation algorithms. It produced multicast trees with low cost in a dynamic network environment compared with the previous DQN-based algorithm.

Utilization of deep learning-based metamodel for probabilistic seismic damage analysis of railway bridges considering the geometric variation

  • Xi Song;Chunhee Cho;Joonam Park
    • Earthquakes and Structures
    • /
    • v.25 no.6
    • /
    • pp.469-479
    • /
    • 2023
  • A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.

Prediction of water level in a tidal river using a deep-learning based LSTM model (딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측)

  • Jung, Sungho;Cho, Hyoseob;Kim, Jeongyup;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1207-1216
    • /
    • 2018
  • Discharge or water level predictions at tidally affected river reaches are currently still a great challenge in hydrological practices. This research aims to predict water level of the tide dominated site, Jamsu bridge in the Han River downstream. Physics-based hydrodynamic approaches are sometimes not applicable for water level prediction in such a tidal river due to uncertainty sources like rainfall forecasting data. In this study, TensorFlow deep learning framework was used to build a deep neural network based LSTM model and its applications. The LSTM model was trained based on 3 data sets having 10-min temporal resolution: Paldang dam release, Jamsu bridge water level, predicted tidal level for 6 years (2011~2016) and then predict the water level time series given the six lead times: 1, 3, 6, 9, 12, 24 hours. The optimal hyper-parameters of LSTM model were set up as follows: 6 hidden layers number, 0.01 learning rate, 3000 iterations. In addition, we changed the key parameter of LSTM model, sequence length, ranging from 1 to 6 hours to test its affect to prediction results. The LSTM model with the 1 hr sequence length led to the best performing prediction results for the all cases. In particular, it resulted in very accurate prediction: RMSE (0.065 cm) and NSE (0.99) for the 1 hr lead time prediction case. However, as the lead time became longer, the RMSE increased from 0.08 m (1 hr lead time) to 0.28 m (24 hrs lead time) and the NSE decreased from 0.99 (1 hr lead time) to 0.74 (24 hrs lead time), respectively.

Prediction of short-term algal bloom using the M5P model-tree and extreme learning machine

  • Yi, Hye-Suk;Lee, Bomi;Park, Sangyoung;Kwak, Keun-Chang;An, Kwang-Guk
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.404-411
    • /
    • 2019
  • In this study, we designed a data-driven model to predict chlorophyll-a using M5P model tree and extreme learning machine (ELM). The Juksan weir in the Youngsan River has high chlorophyll-a, which is the primary indicator of algal bloom every year. Short-term algal bloom prediction is important for environmental management and ecological assessment. Two models were developed and evaluated for short-term algal bloom prediction. M5P is a classification and regression-analysis-based method, and ELM is a feed-forward neural network with fast learning using the least square estimate for regression. The dataset used in this study includes water temperature, rainfall, solar radiation, total nitrogen, total phosphorus, N/P ratio, and chlorophyll-a, which were collected on a daily basis from January 2013 to December 2016. The M5P model showed that the prediction model after one day had the highest performance power and dropped off rapidly starting with predictions after three days. Comparing the performance power of the ELM model with the M5P model, it was found that the performance power of the 1-7 d chlorophyll-a prediction model was higher. Moreover, in a period of rapidly increasing algal blooms, the ELM model showed higher accuracy than the M5P model.

Resource Metric Refining Module for AIOps Learning Data in Kubernetes Microservice

  • Jonghwan Park;Jaegi Son;Dongmin Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1545-1559
    • /
    • 2023
  • In the cloud environment, microservices are implemented through Kubernetes, and these services can be expanded or reduced through the autoscaling function under Kubernetes, depending on the service request or resource usage. However, the increase in the number of nodes or distributed microservices in Kubernetes and the unpredictable autoscaling function make it very difficult for system administrators to conduct operations. Artificial Intelligence for IT Operations (AIOps) supports resource management for cloud services through AI and has attracted attention as a solution to these problems. For example, after the AI model learns the metric or log data collected in the microservice units, failures can be inferred by predicting the resources in future data. However, it is difficult to construct data sets for generating learning models because many microservices used for autoscaling generate different metrics or logs in the same timestamp. In this study, we propose a cloud data refining module and structure that collects metric or log data in a microservice environment implemented by Kubernetes; and arranges it into computing resources corresponding to each service so that AI models can learn and analogize service-specific failures. We obtained Kubernetes-based AIOps learning data through this module, and after learning the built dataset through the AI model, we verified the prediction result through the differences between the obtained and actual data.

Auto Labelling System using Object Segmentation Technology (객체 분할 기법을 활용한 자동 라벨링 구축)

  • Moon, Jun-hwi;Park, Seong-hyeon;Choi, Jiyoung;Shin, Wonsun;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.222-224
    • /
    • 2022
  • Deep learning-based computer vision applications in the field of object segmentation take a transfer learning method using hyperparameters and models pretrained and distributed by STOA techniques to improve performance. Custom datasets used in this process require a lot of resources, such as time and labeling, in labeling tasks to generate Ground Truth information. In this paper, we present an automatic labeling construction method using object segmentation techniques so that resources such as time and labeling can be used less to build custom datasets used in deep learning neural networks.

  • PDF

The Implementation and Evaluation of Learning Experience-Based Professionalism Program in Medical School (의과대학의 학습경험 중심 전문직업성 프로그램 운영 및 평가)

  • Yoo, Hyo Hyun;Kim, Young Jon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.164-172
    • /
    • 2018
  • This study explores how to implement a learning experience-based professionalism program for a medical students and evaluates its program through effectiveness and usability test. This study aims to provide practical implications for experience-based learning in an undergraduate level. Seventy four first-year medical students enrolled in PDS1(Patient-Doctor-Society 1): professionalism, one-week block (30 hours), one-credit program based on a experience-based learning model. All of the students were given six learning themes and learning resources and supporting tools, and conducted stepwise learning activities; preparation, organization, sharing, reflection and evaluation of experiences. The effectiveness of learning was evaluated by comparing the pre and post results of student's self-assessment on 24 questionnaire items about professionalism. After the course, the students and instructors conducted a usability evaluation of the program through questionnaires or group interviews. Learners' self-assessment results of professionalism such as leadership, self-directed learning, professional attitude, and social accountability all showed significant differences between the pre- and post-test. Satisfaction of the program was distributed to 3.58~3.78 according to items. Instructors and learner interviews confirmed practical usability throughout the course design, implementation and students evaluation. The results of the study showed the feasibility of implementing learning experience-based professionalism program in medical school. This study provides practical implications to develope and evaluate the learning experience-based professionalism program in medical education.