References
- Anderson DM, Cembella AD, Hallegraeff GM. Progress in understanding harmful algal blooms: Paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci. 2012;4:143-176. https://doi.org/10.1146/annurev-marine-120308-081121
- Glasgow HB, Burkholder JM, Reed RE, Lewitus AJ, Kleinman JE. Real-time remote monitoring of water quality: A review of current applications, and advancements in sensor, telemetry, and computing technologies. J. Exp. Mar. Biol. Ecol. 2004;300:409-448. https://doi.org/10.1016/j.jembe.2004.02.022
- Conley DJ, Paerl HW, Howarth RW, et al. Controlling eutrophication: Nitrogen and phosphorus. Science 2009;323:1014-1015. https://doi.org/10.1126/science.1167755
- Paerl HW. Controlling cyanobacterial harmful blooms in freshwater ecosystems, microbial biotechnology. Microb. Biotechnol. 2017;10:1106-1110. https://doi.org/10.1111/1751-7915.12725
- Zhang X, Recknagel F, Chen Q, Cao H, Li R. Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation. Ecol. Modell. 2014;306:216-225.
- Xie Z, Lou I, Ung WK, Mok KM. Freshwater algal bloom prediction by support vector machine in Macau Storage Reservoirs. Math. Probl. Eng. 2012;27:1-12.
- Park Y, Cho KH, Park J, Cha SM, Kim JH. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea. Sci. Total Environ. 2015;502:31-41. https://doi.org/10.1016/j.scitotenv.2014.09.005
- Jung NC, Popescu I, Kelderman P, Solomatine DP, Price RK. Application of model trees and other machine learning techniques for algal growth prediction in Yongdam reservoir, Republic of Korea. J. Hydroinform. 2010;12:262-274. https://doi.org/10.2166/hydro.2009.004
- Ye L, Cai Q, Zhang M, Tan L. Real-time observation, early warning and forecasting phytoplankton blooms by integrating in situ automated online sondes and hybrid evolutionary algorithm. Ecol. Inform. 2014;22:44-51. https://doi.org/10.1016/j.ecoinf.2014.04.001
- Lee JHW, Huang Y, Dickman M, Jayawardena AW. Neural network modelling of coastal algal blooms. Ecol. Modell. 2003;159:179-201. https://doi.org/10.1016/S0304-3800(02)00281-8
- Kim ME, Shin HS. Study on establishing algal bloom forecasting models using the artificial neural network. J. Korea Water Resour. Assoc. 2013;46:697-706. https://doi.org/10.3741/JKWRA.2013.46.7.697
- Xu Y, Dai Y, Dong ZY, Zhang R, Meng K. Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comput. Applic. 2013;22:501-508. https://doi.org/10.1007/s00521-011-0803-3
- Yadav B, Ch S, Mathur S, Adamowski J. Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement 2016;92:433-445. https://doi.org/10.1016/j.measurement.2016.06.042
- Lou I, Xie Z, Ung WK, Mok KM. Freshwater algal bloom prediction by extreme learning machine in Macau Storage Reservoirs. Neural Comput. Applic. 2016;27:19-26. https://doi.org/10.1007/s00521-013-1538-0
- Boyer JN, Kelble CR, Ortner PB, Rudnick DT. Phytoplankton bloom status: Chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecol. Indic. 2009;9:S56-S67. https://doi.org/10.1016/j.ecolind.2008.11.013
- U.S. E.P.A. Water quality criteria research of the U.S. Environmental Protection Agency. Proceedings of an EPA Sponsored Symposium; 1976.
- OECD. OECD Eutrophication programme-regional project alpine lakes. Swiss Federal Board for Environmental Protection OECD; 1980.
- Nikoo MR, Karimi A, Kerachian R, Poorsepahy-Samian H, Daneshmand F. Rules for optimal operation of reservoir-river-groundwater systems considering water quality targets: Application of M5P model. Water Resour. Manage. 2013;27:2771-2784. https://doi.org/10.1007/s11269-013-0314-3
- Quinlan JR. Learning with continuous classes. In: Proceedings AI'92, Adams & Sterling, eds. World Scientific. 1992. p. 343-348.
- Zhan C, Gan A, Hadi M. Prediction of lane clearance time of freeway incidents using the M5P tree algorithm. IEEE Trans. Intell. Transp. Syst. 2011;12:1549-1557. https://doi.org/10.1109/TITS.2011.2161634
- Wang Y, Witten IH. Inducing model trees for continuous classes. In: Proceedings of the Poster Papers of the 9th European Conference on Machine Learning (ECML 97). van Someren M, Widmer G, eds. 1997. p. 128-137.
- Almasi SN, Bagherpour R, Mikaeil R, Ozcelik Y, Kalhori H. Predicting the building stone cutting rate based on rock properties and device pullback amperage in quarries using M5P model tree. Geotech. Geol. Eng. 2017;35:1311-1326. https://doi.org/10.1007/s10706-017-0177-0
- Huang GB, Zhu QY, Siew CK. Extreme learning machine: A new learning scheme of feedforward neural networks. In: Proceedings of the IEEE International Joint Conference on Neural Networks; 25-29 July 2004; Budapest, Hungary. 2004. p. 985-990.
- Zhou J, Peng T, Zhang C, Sun N. Data pre-analysis and ensemble of various artificial neural networks for monthly streamflow forecasting. Water 2018;10:628. https://doi.org/10.3390/w10050628
- Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing 2006;70:489-501. https://doi.org/10.1016/j.neucom.2005.12.126
- Huang GB, Babri HA. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998;9:224-229. https://doi.org/10.1109/72.655045
- Huang GB. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003;14:274-281. https://doi.org/10.1109/TNN.2003.809401
- Van Nieuwenhuyse EE, Jones RJ. Phosphorus-chlorophyll relationship in temperature strems and its variation with stream catchment area. Can. J. Fish. Aquat. Sci. 1996;53:53-99.
- Mamun M, Lee SJ, An KG. Temperature and spatial variation of nutrients, suspended solids, and chlorophyll in Yeongsan watershed. J. Asia Pac. Biodivers. 2018;11:206-216. https://doi.org/10.1016/j.japb.2018.02.006
- Reckagel F, French M, Harkonen P, Yabunaka KI. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Modell. 1997;96:11-28. https://doi.org/10.1016/S0304-3800(96)00049-X
Cited by
- Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model vol.34, pp.2, 2019, https://doi.org/10.1007/s00477-020-01776-2
- Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches vol.27, pp.9, 2020, https://doi.org/10.1007/s11356-019-07519-3
- Regression Tree Model for Predicting Game Scores for the Golden State Warriors in the National Basketball Association vol.12, pp.5, 2019, https://doi.org/10.3390/sym12050835
- Daily Water Level Prediction of Zrebar Lake (Iran): A Comparison between M5P, Random Forest, Random Tree and Reduced Error Pruning Trees Algorithms vol.9, pp.8, 2019, https://doi.org/10.3390/ijgi9080479
- Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri An Reservoir, Vietnam vol.192, pp.12, 2019, https://doi.org/10.1007/s10661-020-08731-2
- Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea vol.18, pp.16, 2021, https://doi.org/10.3390/ijerph18168268
- Comparing the performance of machine learning algorithms for remote and in situ estimations of chlorophyll‐a content: A case study in the Tri An Reservoir, Vietnam vol.93, pp.12, 2019, https://doi.org/10.1002/wer.1643