• Title/Summary/Keyword: Resource Utilization

Search Result 1,248, Processing Time 0.105 seconds

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

  • Vo, Viet Tan;Kim, Cheol Hong
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1157-1169
    • /
    • 2021
  • Modern graphics processor unit (GPU) architectures offer significant hardware resource enhancements for parallel computing. However, without software optimization, GPUs continuously exhibit hardware resource underutilization. In this paper, we indicate the need to alter different warp scheduler schemes during different kernel execution periods to improve resource utilization. Existing warp schedulers cannot be aware of the kernel progress to provide an effective scheduling policy. In addition, we identified the potential for improving resource utilization for multiple-warp-scheduler GPUs by sharing stalling warps with selected warp schedulers. To address the efficiency issue of the present GPU, we coordinated the kernel-aware warp scheduler and warp sharing mechanism (KAWS). The proposed warp scheduler acknowledges the execution progress of the running kernel to adapt to a more effective scheduling policy when the kernel progress attains a point of resource underutilization. Meanwhile, the warp-sharing mechanism distributes stalling warps to different warp schedulers wherein the execution pipeline unit is ready. Our design achieves performance that is on an average higher than that of the traditional warp scheduler by 7.97% and employs marginal additional hardware overhead.

Resource Efficient AI Service Framework Associated with a Real-Time Object Detector

  • Jun-Hyuk Choi;Jeonghun Lee;Kwang-il Hwang
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.439-449
    • /
    • 2023
  • This paper deals with a resource efficient artificial intelligence (AI) service architecture for multi-channel video streams. As an AI service, we consider the object detection model, which is the most representative for video applications. Since most object detection models are basically designed for a single channel video stream, the utilization of the additional resource for multi-channel video stream processing is inevitable. Therefore, we propose a resource efficient AI service framework, which can be associated with various AI service models. Our framework is designed based on the modular architecture, which consists of adaptive frame control (AFC) Manager, multiplexer (MUX), adaptive channel selector (ACS), and YOLO interface units. In order to run only a single YOLO process without regard to the number of channels, we propose a novel approach efficiently dealing with multi-channel input streams. Through the experiment, it is shown that the framework is capable of performing object detection service with minimum resource utilization even in the circumstance of multi-channel streams. In addition, each service can be guaranteed within a deadline.

Characterization of an antifungal compound isolated from an antagonistic fungus Aspergillus terreus against phytopathogenic fungi (식물병원균 생육을 저해하는 Aspergillus terreus로부터 분리한 향균물질의 특성)

  • Kim, Keun-Ki;Kang, Jae-Gon;Choi, Yong-Lark;Yun, Han-Dae;Ha, Ho-Sung;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.40-45
    • /
    • 1998
  • An antagonistic fungus inhibiting growth of various phytopathogenic fungi was isolated from greenhouse soils and identified. Mophological features of fruiting structures on potato dextrose agar and colorless globose to ovate heavy walled hyaline cells from the vegetative mycelium grown on MY20 agar indicate that this antagonist is Aspergillus terreus. The antagonistic activity is due to the production of antifungal compounds. An antifungal compound was purified from its culture filtrate using chloroform extraction, column chromatography, and thin layer chromatography. The purified antibiotic was effective to various phytopathogenic fungi and identified as butyrolactone I. $ED_{50}$ values measured by petri-plate assay through effective dosage(ED)-probit analysis were 9.7, 13.7, 23.3, 42.6 and 102.7 ppm on Botrytis cinerea, Rhizoctonia solani, Pythium ultimum, Phytophthora capsici, and Fusarium oxysporum, respectively.

  • PDF

Occurrence and control of N-nitrosodimethylamine in water engineering systems

  • Bian, Yongning;Wang, Chuang;Zhu, Guocheng;Ren, Bozhi;Zhang, Peng;Hursthouse, Andrew S.
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • N-nitrosodimethylamine (NDMA) is a typical nitrogen disinfection by-product, which has posed a potential threat to human health during drinking water disinfection. Because of the well-known effects of mutagenesis, carcinogenesis and teratogenesis, the high detection rate in water engineering systems (such as coagulation, membrane filtration and biological systems), and difficulty to remove, it has received wide concern in the field of water engineering systems. The NDMA is a low molecular weight hydrophilic organic substance, which is difficult to remove. Also, the mechanism for NDMA formation is also recognized to be complex, and many steps still needed to be further evaluated. Therefore, the mechanistic knowledge on NDMA formation potential and their removal processes is of particularly interest. Few papers summarize the occurrence and control of NDMA in water engineering systems. It is for this reason that the content of this paper is particularly important for us to understand and control the amount of NDMA thus reducing the threat of disinfection by-products to drinking water. Four parts including the mechanisms for the NDMA formation potential, the factors affecting the NDMA formation potential, the technologies for removal of NDMA are summarized. Finally, some definite suggestions are given.

A Resource Reduction Scheme with Low Migration Frequency for Virtual Machines on a Cloud Cluster

  • Kim, Changhyeon;Lee, Wonjoo;Jeon, Changho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1398-1417
    • /
    • 2013
  • A method is proposed to reduce excess resources from a virtual machine(VM) while avoiding subsequent migrations for a computer cluster that provides cloud service. The proposed scheme cuts down on the resources of a VM based on the probability that migration may occur after a reduction. First, it finds a VM that can be scaled down by analyzing the history of the resource usage. Then, the migration probability is calculated as a function of the VM resource usage trend and the trend error. Finally, the amount of resources needed to eliminate from an underutilized VM is determined such that the migration probability after the resource reduction is less than or equal to an acceptable migration probability. The acceptable migration probability, to be set by the cloud service provider, is a criterion to assign a weight to the resource reduction either to prevent VM migrations or to enhance VM utilization. The results of simulation show that the proposed scheme lowers migration frequency by 31.6~60.8% depending on the consistency of resource demand while losing VM utilization by 9.1~21.5% compared to other known approaches, such as the static and the prediction-based methods. It is also verified that the proposed scheme extends the elapsed time before the first occurrence of migration after resource reduction 1.1~2.3-fold. In addition, changes in migration frequency and VM utilization are analyzed with varying acceptable migration probabilities and the consistency of resource demand patterns. It is expected that the analysis results can help service providers choose a right value of the acceptable migration probability under various environments having different migration costs and operational costs.

Challenges and Issues of Resource Allocation Techniques in Cloud Computing

  • Abid, Adnan;Manzoor, Muhammad Faraz;Farooq, Muhammad Shoaib;Farooq, Uzma;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2815-2839
    • /
    • 2020
  • In a cloud computing paradigm, allocation of various virtualized ICT resources is a complex problem due to the presence of heterogeneous application (MapReduce, content delivery and networks web applications) workloads having contentious allocation requirements in terms of ICT resource capacities (resource utilization, execution time, response time, etc.). This task of resource allocation becomes more challenging due to finite available resources and increasing consumer demands. Therefore, many unique models and techniques have been proposed to allocate resources efficiently. However, there is no published research available in this domain that clearly address this research problem and provides research taxonomy for classification of resource allocation techniques including strategic, target resources, optimization, scheduling and power. Hence, the main aim of this paper is to identify open challenges faced by the cloud service provider related to allocation of resource such as servers, storage and networks in cloud computing. More than 70 articles, between year 2007 and 2020, related to resource allocation in cloud computing have been shortlisted through a structured mechanism and are reviewed under clearly defined objectives. Lastly, the evolution of research in resource allocation techniques has also been discussed along with salient future directions in this area.

A Study of Human Resource Practices Affecting Knowledge Sharing and Utilization in Public Organization (공공기관의 인적자원관리가 지식공유 및 지식활용에 미치는 영향)

  • Lee, Hyang-Soo
    • Journal of the Korean Society for information Management
    • /
    • v.28 no.3
    • /
    • pp.239-256
    • /
    • 2011
  • Main drivers of knowledge activities such as knowledge sharing and utilization are individual members of an organization and thus knowledge management strategies should be discussed in relationships with human resource management. This study analyzes the effects on knowledge sharing and knowledge utilization of human resource management practices such as training, participation in decision-making, performance appraisal and compensation system in local government. The results show that training and performance appraisal and compensation system are significantly influential factors for the knowledge sharing and knowledge utilization. Lessons and implications of this study for management leadership are presented.

Decentralized Broker-BBsed Model for Resource Management in Grid Computing Environment (그리드 컴퓨팅 환경에서의 자원 관리를 위한 분산화된 브로커 기반 모델)

  • Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Resource management in grid computing environment is essential for integration and interaction among heterogeneous resources. This paper discusses resource management methods of centralized and decentralized broker-based modeling for solving complex problems of resource management and presents design and development of the decentralized broker-based resource management modeling in grid computing environment. This model comprises a global resource broker and a local resource broker, and we derive reduction of communication and functional dispersion of Job management using a local resource broker. The simulation experiment shows the improvement of resource utilization and average response time and proves that this model improves utilization of resources and replies to user requests promptly.

  • PDF

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Cross-Talk: D2D Potentiality Based Resource Borrowing Schema for Ultra-Low Latency Transmission in Cellular Network

  • Sun, Guolin;Dingana, Timothy;Adolphe, Sebakara Samuel Rene;Boateng, Gordon Owusu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2258-2276
    • /
    • 2019
  • Resource sharing is one of the main goals achieved by network virtualization technology to enhance network resource utilization and enable resource customization. Though resource sharing can improve network efficiency by accommodating various users in a network, limited infrastructure capacity is still a challenge to ultra-low latency service operators. In this paper, we propose an inter-slice resource borrowing schema based on the device-to-device (D2D) potentiality especially for ultra-low latency transmission in cellular networks. An extended and modified Kuhn-Munkres bipartite matching algorithm is developed to optimally achieve inter-slice resource borrowing. Simulation results show that, proper D2D user matching can be achieved, satisfying ultra-low latency (ULL) users' quality of service (QoS) requirements and resource utilization in various scenarios.