

www.kips.or.kr Copyright© 2021 KIPS

KAWS: Coordinate Kernel-Aware Warp Scheduling

and Warp Sharing Mechanism for Advanced GPUs

Viet Tan Vo* and Cheol Hong Kim**

Abstract

Modern graphics processor unit (GPU) architectures offer significant hardware resource enhancements for

parallel computing. However, without software optimization, GPUs continuously exhibit hardware resource

underutilization. In this paper, we indicate the need to alter different warp scheduler schemes during different

kernel execution periods to improve resource utilization. Existing warp schedulers cannot be aware of the kernel

progress to provide an effective scheduling policy. In addition, we identified the potential for improving

resource utilization for multiple-warp-scheduler GPUs by sharing stalling warps with selected warp schedulers.

To address the efficiency issue of the present GPU, we coordinated the kernel-aware warp scheduler and warp

sharing mechanism (KAWS). The proposed warp scheduler acknowledges the execution progress of the

running kernel to adapt to a more effective scheduling policy when the kernel progress attains a point of

resource underutilization. Meanwhile, the warp-sharing mechanism distributes stalling warps to different warp

schedulers wherein the execution pipeline unit is ready. Our design achieves performance that is on an average

higher than that of the traditional warp scheduler by 7.97% and employs marginal additional hardware

overhead.

Keywords

GPU, Multiple Warp Schedulers, Resource Underutilization, Warp Scheduling

1. Introduction

Over the past decade, graphics processor units (GPUs) have become an attractive platform as these

provide a remarkable computing paradigm for graphical applications. Incorporated with substantial

amounts of parallel logical units and fabricated using an advanced semiconductor process, GPUs are

displaying increasing potential for general-purpose GPU (GPGPU) applications. The key features of a

GPU are its high degree of throughput and exceptional computation capability. From a programming

perspective, the CUDA and OpenCL platforms are increasing its popularity among programmers and

researchers. This has resulted in several attempts to improve the performance and energy consumption

of GPUs. The computational capacity of GPUs originates mostly from its capability for instant context-

switching to hide long latency instructions and a substantial level of multi-threading. In general, a GPU

achieves this using a warp scheduler. At each cycle, the warp scheduler iterates through a pool of ready

warps (a group of 32 threads) to issue warp instructions for the next execution pipeline.

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received May 17, 2021; first revision July 9, 2021; accepted July 17, 2021.
Corresponding Author: Cheol Hong Kim (cheolhong@ssu.ac.kr)
* ICT Convergence System Engineering, Chonnam National University, Gwangju, Korea (vviettansa@gmail.com)
** School of Computer Science and Engineering, Soongsil University, Seoul, Korea (cheolhong@ssu.ac.kr)

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.01.0084 ISSN 2092-805X (Electronic)

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

1158 | J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021

The traditional warp scheduler policy (loose round-robin [LRR]) assigns equal priority to each warp in

the scheduler’s scheduling list. Thereby, all the warps achieve equivalent progress and attain long latency

instructions almost simultaneously. This dramatically reduces the latency-hiding capability. LRR

effectively exploits an inter-warp locality. However, it cannot utilize intra-warp locality since a nature of

constant changing warp to issue at each cycle. Another popular warp scheduler is greedy then oldest

(GTO) [1]. It is a standard for comparison. GTO prioritizes warps in a better manner. Intra-warp locality

is preserved because the GTO scheduler continues to issue the same warp until it stalls, before moving

to the oldest warp to be issued. The warp scheduler plays a crucial role in GPU performance. Several

studies have proposed various warp scheduler schemes to address different aspects of GPU architectures.

However, this is not the case for advanced architectures. Substantial upgrades over several generations

(including advanced memory hierarchy, high bandwidth memory, numerous execution units, and

multiple warp schedulers) have solved diverse limitations of the GPU. This has also reduced the impact

of the warp scheduler on the overall performance. Our experiments (the simulation setup is described in

Section 4) show that GTO outperforms LRR by 4.7% on an average for nine applications. Therefore, to

further improve the performance of advanced GPU architectures, we need to analyze the operation of the

warp scheduler following a novel approach and provide a supplementary technique.

Most earlier warp schedulers consistently applied the scheduling algorithm for the entire kernel

execution. This is notwithstanding that the execution process involves inconsistent execution patterns

over the kernel execution process. During one period of kernel execution, scheduling policy A may be

more effective than scheduling policy B. In other periods, the converse may be true. In this study, we

reveal the ineffectiveness of the application of the same warp scheduling policy over the entire kernel

execution process. We solve this problem by proposing a simple kernel-aware warp scheduler that

switches to a more effective scheduling policy when the kernel execution attains a certain milestone.

Another aspect that has not been considered is the operation of multiple warp schedulers. Previous studies

considered warp schedulers in streaming multiprocessors (SMs) to be independent of each other.

However, each warp scheduler shares the execution workload whereby, scheduling activities may

influence each other. Based on this observation, we propose a warp-sharing mechanism that enables each

warp scheduler to acknowledge others warp schedulers’ activities. Consequently, it provides a more

effective scheduling operation among multiple warp schedulers in an SM.

This paper is organized as follows: Section 2 discusses the background organization of the baseline

GPU and reviews the related work. In Section 3, we describe our proposed concept in detail. In Section

4, we evaluate our implementation, analyze its advantages, and compare it with the common warp

schedulers. Section 5 concludes the paper.

2. Background

2.1 GPU Architecture

An advanced GPU architecture leverages multiple SMs to address parallel computing problems. From

a memory perspective, each SM is equipped with an advanced memory hierarchy consisting of register

files (RF), L1 cache, shared memory, L2 cache, and off-chip GDDR DRAM. The L1 cache is private for

each SM and is responsible for caching temporary register spills of complex programs. In addition,

Viet Tan Vo and Cheol Hong Kim

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 | 1159

according to the SM configuration, shared memory is programmer visible. This enables intra-CTA

communication to increase the reusability of on-chip data. The requests are forwarded to the L2 cache

via interconnection if these miss the L1 cache. To handle miss requests at the L2 cache, the memory

controller schedules the memory requests to the DRAM. At each level, missed requests are tracked by

miss-status holding registers (MSHRs). Fig. 1 shows the detailed microarchitecture of modern GPUs.

Fig. 1. Baseline GPU architecture. The blue components represent additional hardware in this study.

Inside an SM, a scalar front-end fetches, decodes, and stores instructions in the instruction buffer (I-

buffer) indexed by warp ID. Warp instructions are scheduled and issued to the execution pipeline by the

warp schedulers. In advanced GPU architectures, there are typically two or four warp schedulers in an

SM. Each warp scheduler can issue a maximum of two instructions from the I-buffer per cycle to the

available GPU cores. An operand collector unit (OCU) is assigned to a warp instruction when it is issued.

This is performed to load a source operand value for it. Source operand requests are queued by an

arbitrator and then sent to the RF. To reduce interconnect complexity and area cost, the OCU is designed

as a single-ported buffer so that it receives only one operand per cycle [2]. Each instruction can have a

maximum of three source operands. It may require more than three cycles if bank conflict occurs in the

RF. During this time, the OCU is not available to receive new warp instruction. When all the required

operands are collected, the instruction is ready to be issued to the SIMD (single instruction, multiple data)

execution unit—streaming processor (SP), special function unit (SFU), and memory (MEM). In the

Pascal architecture, four SP, four SFU, and four MEM pipeline widths correspond to four warp

schedulers. The SP unit executes ALU, INT, and SP operations. The SFU unit executes double-precision

(DP), sine, cosine, log, and other operations. The MEM unit is responsible for load/store operations. Each

unit has an independent issue port from the OCU. Therefore, the warp scheduler cannot issue new warp

instructions corresponding to an execution unit if the OCU of that unit is stalled.

In the GPU programming model, the GPGPU application consists of one or several kernels. Each kernel

groups the threads into cooperative thread arrays (CTAs). The threads within a CTA execute in a group

of 32 threads called warp. All the threads in a warp execute instructions in a lock-step manner (single-

instruction multiple thread). At the SM level, the CTA scheduler assigns CTAs to each SM in each clock

cycle until it attains the SM’s resource saturation [3]. The maximum number of CTAs that can

concurrently run in an SM is determined by the number of threads per CTA, the configured architecture

limit number, the per-thread register, and the shared memory usage. When all the threads in the CTA are

completed, the CTA is marked as complete and new CTA is assigned in the next cycle.

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

1160 | J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021

2.2 Related Works

Many prior studies have leveraged warp schedulers to improve latency-hiding capability, reduce

branch divergence, or increase cache performance. In this section, we discuss certain well-known

scheduling schemes and compare these with our proposed scheduler. CCWS [1] monitors cache

contention by using a locality detector to throttle the number of active warps if the detector observes

frequent cache eviction. Although this scheduler can reduce cache contention, it targets only cache-

sensitive applications. Chen et al. [4] proposed adaptive cache management to overcome the limitations

of the pure cache bypassing technique. The concept is built on top of warp throttling to protect hot cache

lines and reduce cache contention. However, the management scheme still prefers cache-sensitive

benchmarks while employing complex hardware overhead. CAWA [5] designed a criticality predictor to

forecast critical warps in CTA. They proposed a criticality-aware warp scheduler that prioritizes critical

warps and a cache reuse predictor to enhance warp execution speed. The underlying concept is that

excessive work is required to design the instruction-based and stall-based predictor. This is in addition to

the effort required to partition the data cache dedicated to critical warp execution. iPAWS [6] utilized

existing warp schedulers such as GTO and LRR by switching to a suitable warp scheduler based on the

instruction pattern. However, the performance gain is limited by the maximum performance of GTO and

LRR. The implementation also requires execution time to trade for making warp-scheduler decisions. If

this execution time accounts for a large portion of the total execution time, it can substantially reduce the

performance. SAWS [7] addressed the synchronization issue of multiple warp schedulers. Liu et al. [7]

designed schedulers that coordinate with each other to reduce the barrier waiting time and thereby,

prevent warps from being stalled at a barrier for excessively long periods. The limitation of this study is

that it is effective only for rich-barrier synchronization applications.

Only a few studies have been investigated to improve the resource utilization of GPUs by using warp

schedulers. Our motivation in this work is to use the kernel-aware warp scheduling to fine-tune the

resource allocation process by targeting the absence of multi warp scheduling policies during kernel

execution. The proposed warp scheduler is differentiated from previous warp schedulers by employing

two warp scheduling policies to effectively adapt to kernel execution progress. On the other hand, warp

sharing mechanism is deviated from the lack of cooperation between multi warp schedulers within an

SM. The combination of these two main ideas can improve the resource utilization of GPUs, resulting in

significant performance gains.

3. Coordinate Kernel-Aware Warp Scheduling and Warp Sharing

Mechanism

Resource underutilization occurs when the number of running CTAs in the SM is less than the

maximum number of CTAs that the SM can handle. Thus, the key to the prevention of resource

underutilization is to maximize the utilization of the SM by allocating the maximum number of CTAs to

it. Fig. 2(a) illustrates how present GPUs waste resources during different periods of kernel execution.

For convenient demonstration, we have used a GPU with two SMs. Assume that a kernel contains 32

CTAs and that each SM can manage a maximum of four concurrent CTAs. First, SM_0 and SM_1 receive

four CTAs from the CTA scheduler (one in each cycle in a round-robin manner). Whenever a CTA

Viet Tan Vo and Cheol Hong Kim

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 | 1161

completes execution, a new CTA is assigned to the empty CTA slot in the next cycle. At time t0, CTA26

completes its execution in SM_1. However, no new CTA remains in the kernel to fill the CTA slot. This

leaves three CTAs to run freely in SM_1. From that instant, SM_1 starts to exhibit more severe resource

underutilization. The number of running CTAs in SM_1 after the completion of CTA24 and CTA29

remain two and one, respectively. The non-availability of a sufficient number of CTAs to utilize all the

available resources in an SM results in substantial wastage. This underutilization continues until the final

CTA (CTA31) completes its execution. Subsequently, a new kernel is launched to fill the empty CTA

slot in the SM. In SM_0, resource underutilization begins to occur from time t1.

Fig. 2. Resource underutilization at the completion of kernel execution: (a) conventional kernel-unaware

warp scheduler, (b) proposed kernel-aware warp scheduler, and (c) warp-level illustration for kernel-

aware warp scheduler.

From the motivation example, we understand that resource underutilization occurs in SM_1 when any

CTA in SM_1 (in this example: CTA26 at t0) completes its execution after SM_1 receives the final CTA

(in this example, CTA31) from the CTA scheduler. In general, we consider the time when the final CTA

is issued in SM_x as a milestone of resource underutilization. This is because within a short period from

that time, SM_x would complete one running CTA without additional CTA being filled and thereby

exhibit resource underutilization. However, it is difficult to identify the CTA that is issued last to SM_x.

This is because each SM can receive a different number of CTAs depending on the speed with which the

CTAs are executed. Therefore, we determine the time when the last CTA in the kernel is issued is the

milestone of resource underutilization. After this milestone, a more efficient scheduling policy is required

to reduce resource underutilization. We propose a kernel-aware warp scheduler. This scheduler prioritizes

warps based on their ages during normal kernel execution. As soon as it detects the milestone when the

final CTA in the kernel is issued, it switches to a progress-based prioritization policy to speed up the

execution for more recently issued CTAs. Warps that belong to more recently issued CTAs are prioritized

based on the CTA progress. We define the CTA progress as the number of instructions issued from one

CTA. Older CTAs (or CTAs issued earlier) tend to issue more instructions and are likely to be completed

early. Therefore, we deprioritize these to speed up younger CTAs (or CTAs issued more recently).

Thereby, CTAs issued more recently (particularly the last issued CTA in a kernel) can be completed

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

1162 | J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021

earlier whereas the execution time of previously issued CTAs can be prolonged. As a result, all the CTAs

are adjusted for these to be completed almost simultaneously. This implies that the SM is filled with

running CTAs most of the time. In Fig. 2(b), immediately as CTA31 (finally issued CTA in the kernel)

is assigned (at time = tm), a progress-based scheduling policy is applied. Initially, this policy provides the

highest priority to warps that belong to CTA31 in SM_1 (illustrated in Fig 2(c)). For SM_0, warps from

CTA30 are prioritized first. Then, the scheduler dynamically prioritizes warps based on the progress of

CTA24, CTA26, CTA29 and CTA31 in SM_1; CTA25, CTA27, CTA28, and CTA30 in SM_0. Fig. 2(c)

shows the CTA progress order for SM_1 at t2 and t3 to present how the proposed scheduler works at

warp-level. At t2, warps in CTA31 are assigned the highest priority because the progress of CTA31 is

slower than the other CTAs. Similarly, at t3, the warps from CTA29 are prioritized. Note that the warps

from the same CTA have the same CTA progress, so the scheduler can prioritize them according to their

age (oldest warp or smallest warp ID first). Consequently, in SM_1, the execution times of CTA31 and

CTA29 can be reduced whereas those of CTA26 and CTA24 are prolonged. In SM_0, the progress-based

policy speeds up CTA30 while lengthening the execution times of CTA25, CTA27, and CTA28. Finally,

all the CTAs in the SM are completed almost simultaneously, which prevents resource underutilization

and accounts for several saved cycles. Note that underutilization depends significantly on the execution

time of the last issued CTA in the kernel.

Our proposed warp scheduler can significantly improve the performance when there are few CTAs in

the kernel. If the kernel consists of many CTAs, the fraction of saved cycles out of the total execution

time is marginal. Thereby, the performance improvement is marginal. As mentioned in the Introduction

section, the impact of the warp scheduler, particularly the scheduler that consistently employs a single

scheduling policy for the general performance, is not apparent in modern GPU architectures such as

Pascal. We propose a supplemental concept to improve resource utilization from a different perspective.

The motivation is that a warp scheduler cannot issue new warp instructions if the OCU, which is supposed

to load operands corresponding to that specific warp instruction, is unavailable. Owing to the multiple-

warp-scheduler configuration, OCUs from different warp schedulers are likely to be available. Our

concept is to utilize these to maintain the pipeline and prevent pipeline stall. This concept is called “warp

sharing mechanism.” Fig. 3 illustrates how the mechanism works. Assume that eight warps are scheduled

in four warp schedulers. After the decode stage, we can determine (1) the type of instructions of each

warp by scanning the I-buffer and (2) which execution units are supposed to execute these. S0 denotes

Warp scheduler 0, and w0-mem indicates that Warp 0 is carrying an instruction that would be executed

in the MEM unit. Similarly, sp and sfu denote the instructions to be executed by the SP and SFU units,

respectively. Presently, S0 cannot issue w0 and w4 because the OCU for the MEM unit corresponding to

S0 is unavailable. An identical scenario occurs with w6 at S2, and w3 and w7 at S3. Meanwhile, the OCU

for the MEM unit corresponding to S1 is free. However, S1 does not issue warp instruction because the

instructions w1 and w5 are supposed to issue the OCU for the SP and SFU units, respectively. We propose

a new hardware component called “warp-sharing control unit.” This unit can be aware of all the OCU

statuses and simultaneously collect instruction information from I-buffer to make warp-sharing decisions.

In this example, the warp-sharing control unit enables the memory instruction of w0 to be issued by S1.

Therefore, the OCU for the MEM unit of S1 is utilized. Although w4, w6, w3, and w7 also carry memory

instruction, w0 is prioritized over these because it is the oldest warp. By applying the same rule, the warp-

sharing control unit permits w5 and w1 to be issued by S2 and S3, respectively. This is because OCUs

Viet Tan Vo and Cheol Hong Kim

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 | 1163

for the SFU and SP units in these warp schedulers are available. The primary goal of improving resource

utilization is achieved.

Fig. 3. Warp-sharing mechanism.

In terms of hardware overhead for the kernel-aware warp scheduler, we used 32 instruction counters

to maintain the entire CTA progress. We used a 4 B register per CTA to record the number of warp

instructions issued during CTA execution. This consumes 4×32 bytes of additional storage, where 32 is

the maximum number of CTAs per SM in the Pascal architecture. Therefore, 128 B per SM is adequate

for storage overhead. As shown in Fig. 4(a), we use an additional comparator to be aware of the kernel

execution. When the number of issued CTAs becomes equal to the total number of CTAs in the kernel

(i.e., immediately after the CTA scheduler issues the final CTA in the kernel), the comparator sends a

notification signal to the warp scheduler to switch to a progress-based scheduling policy. A more effective

warp scheduler is selected to improve resource utilization.

Fig. 4(b) illustrates the hardware implementation of the warp-sharing mechanism. The warp scheduler

and OCU for each execution unit are stacked in four layers. This illustrates that there are four warp

schedulers and four corresponding OCUs for each execution unit inside the SM. The “warp sharing

control unit” scans the opcode of each warp instruction (indexed by warp ID) from the I-buffer. Each

warp instruction type is classified using an instruction classifier to identify the execution unit that should

be employed for individual warp instruction. The output is the warp ID information corresponding to

each execution unit, which indicates the warp that can be shared among warp schedulers. The shared

warp IDs are transferred only to suitable warp schedulers via a transmission gate (TX1, TX2, and TX3)

if the availability requirements are satisfied. The conditions to switch on the TX are combined by an

AND gate fed by “in” input status from OCUs. The AND gate functions as a requirement examiner. It

sends the enable signal to the TX only when the OCU conditions are satisfied. In general, the warp ID

corresponding to the SP execution unit is passed through TX1 to Warp scheduler x if the OCU for the SP

execution unit that connects to this warp scheduler is available. In addition, other OCUs for SP execution

units that connect to other warp schedulers are unavailable. Thus, the OCU and SP execution units

corresponding to Warp scheduler x are utilized. Similarly, TX2 and TX3 are dedicated to the SPU and

MEM warp instruction transmissions, respectively. Our warp sharing control unit is designed to read the

I-buffer and OCU statuses in each clock cycle between the decode stage and issue stage. The operation

of this unit relies mainly on simple logic gates. Therefore, it is fast and reasonably low-cost owing to the

inexpensive logic devices.

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

1164 | J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021

Fig. 4. Details of hardware implementation. Additional hardware (in blue) and how these communicate

with existing components in the SM. (a) Employed comparator and counter for kernel-aware warp

scheduler. (b) Warp sharing control unit to manage the sharing mechanism.

4. Evaluation

We implemented kernel-aware and warp-sharing concepts on the cycle-level simulator GPGPU-Sim

v4.0 [8,9]. The simulator carves the GPU architecture in a C-like environment and provides a signi-

ficantly high correlation with the actual GPU. In the fourth version, the simulator supports various highly

advanced GPU architectures. We select the Pascal configuration (Titan X; it is a cutting-edge GPU

architecture) as a baseline for comparison because it is highly effective, stable, and highly popular (as

indicated by its market share). We consider that our implementation works effectively with other GPU

generations because these continue to rely on Pascal, improve machine learning features, and/or reduce

device size and energy consumption by using more advanced semiconductor processes. Table 1 lists the

important parameters used in our configuration.

We evaluated the performance based on nine benchmarks—Streamingcluster (SC), Pathfinder (PF),

B+tree (BT), Hotspot (HS), Mri-q (MRI), Quasirandomgenerator (QRG), 3Dconvolution (3DCV), three

MatrixMultiplication (3MM), and ResNet (RN)—selected from several popular GPU benchmark suites:

Rodinia [10,11], Parboil [12], Polybench [13], CUDA SDK, and Tango [14]. These benchmarks cover

various aspects of actual GPU computations, including traditional cache-sensitive, memory-intensive,

compute-intensive, and machine-learning computation on a GPU. Most of the benchmarks were

simulated to completion or until the variation is negligible in the case of time-consuming benchmarks.

Table 1. Pascal configuration (Titan X)

Parameter Value

SIMT 28 cores

Clock 1417 (core) : 1417 (interconnection) : 1417 (L2) : 2500 (Dram)

Max. # of CTA per SM 32

L1 data cache 24 kB, 48-way

L1 instruction cache 4 kB, 48-way

L2 cache 3 MB

of memory controllers 12

of warps scheduler per SM 4

Viet Tan Vo and Cheol Hong Kim

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 | 1165

4.1 Performance

Fig. 5 shows a comparison of the IPC performance of the KAWS with that of the default built-in warp

scheduler. All the results have been normalized to the baseline configuration using the LRR policy. On

an average, KAWS achieves a performance that is 7.97% and 3.26% higher than those of LRR and GTO,

respectively. Note that although GTO is one of the most effective warp schedulers, its performance is

only 4.7% higher than that of LRR on an average in advanced GPU architectures such as Pascal. Overall,

the performance of the KAWS is higher than that of LRR for eight out of the nine benchmarks. In

particular, KAWS shows a significant improvement in RN (19.91%), HS (19.64%), and 3DCV (13.88%)

because KAWS displays a significantly high performance in terms of latency hiding. These benchmarks

commonly execute uniform instruction patterns. LRR is likely to achieve equal warp progress among

warps. The result is that warps attain long latency instructions almost simultaneously, which implies that

LRR provides low latency hiding capability. MRI computes a matrix that represents the scanner

configuration for calibration [15]. It has a large number of iterations and a strong inter-warp locality

(which explains why LRR is the best scheduler for MRI), whereby the performance of GTO and KAWS

degrades. However, KAWS performs more effectively than GTO in MRI. The SC is a memory-intensive

benchmark. A large number of stall cycles caused by cache misses halts GTO and KAWS to result in an

apparent performance gain over the LRR for this benchmark.

Fig. 5. Performance comparison.

As described earlier, KAWS prioritizes warps according to their ages during normal kernel execution.

This is similar to GTO without greedy warp. Therefore, KAWS inherits the capability to hide latency by

distributing unequal progress among warps. In general, KAWS exhibits higher performance than GTO

for nearly all the evaluated benchmarks because it employs warp sharing and kernel-aware imple-

mentation. KAWS can achieve a performance gain of up to 7.5% and 7.3% over GTO in MRI and 3MM,

respectively. These benchmarks substantially exploit matrix computations, which require continuous

computation and memory instructions. Meanwhile, the warp-sharing mechanism is an effective means

for increasing the usage of computing and memory execution units within an SM. BT is the only

benchmark wherein KAWS achieves almost zero improvement over GTO. This is because BT is a rich-

synchronization application. It comprises several parallel regions between barrier instructions, whereas

KAWS is not designed to identify barrier instructions. In this case, sharing warp has no impact because

warps are generally stalled at the barrier regardless of the scheduler that issues these.

4.2 Resource Utilization

The proposed kernel-aware warp scheduling operates to reduce the execution time of the last issued

100.44%
107.31%

102.15%

117.03%

88.62%

100.14%
111.71% 97.45% 117.42% 104.70%

101.92%
109.40%

102.19%
119.64%

95.26%

104.96%
113.88% 104.56% 119.91% 107.97%

0

0.2

0.4

0.6

0.8

1

1.2

SC PF BT HS MRI QRG 3DCV 3MM RN Average

N
o
rm

a
li
z
e
d
 t
o
 L

R
R

LRR GTO KAWS

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

1166 | J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021

CTA in the kernel while prolonging that of previously issued CTAs. This strategy results in an almost

simultaneous completion of all the CTAs and thereby, a reduction in resource underutilization. Hence,

the key metric to evaluate the effect of warp scheduling on SM utilization is the execution time of the

last issued CTA in the kernel. Moreover, this time is also correlated to the execution time of the entire

kernel. Table 2 shows a comparison of the average execution time of the last CTA in the kernel between

KAWS and the GTO policy. We compare our design only with GTO because resource underutilization

generally occurs in GTO. In LRR, prioritization is intrinsically distributed equally to all the warps,

whereby CTAs are completed almost simultaneously. KAWS and GTO are not comparable with the LRR.

On an average, KAWS reduces the last CTA execution time by 5.09% compared with that of GTO. In

particular, there is a significant degradation of execution time in MRI and QRG. It corresponds to

performance gains of 7.5% and 4.81%, respectively, over GTO. As mentioned in Section 3, kernel-aware

warp scheduling contributes significantly to the overall performance when the number of CTAs in the

kernel is not excessive. This is the reason for the significant improvement in MRI and QRG, which

contain 128 CTAs per kernel. Although KAWS can considerably reduce the execution time of the last

issued CTA in HS, it does not significantly improve the overall performance because the HS kernel

consists of many CTAs. Meanwhile, KAWS increases the last CTA execution time by 3.35% in RN.

However, its effect on the performance is compensated for by the effectiveness of the warp-sharing

mechanism to prevent performance degradation.

Table 2. Average execution time (cycle) of last issued CTA in kernel

Benchmark
Number of

kernels

Number of CTAs

per kernel

Last CTA execution time Normalized to

GTO (%) GTO KAWS

SC 140 128 119511.6 117218.33 98.08

PF 5 463 11914.4 11631.6 97.63

BT 2 6000 or 10000 5300 5291 99.83

HS 1 1849 3372 2878 85.35

MRI 4 128 200378.3 186167.67 92.91

QRG 42 128 57937.19 48287.57 83.34

3DCV 254 256 2994.29 2859.68 95.50

3MM 3 1024 199260.7 195657.33 98.19

RN 38 64 or 256 300766.9 310851.34 103.35

Average - - - - 94.91

Fig. 6 presents a breakdown of the portion of SM inactive cycles, which are the cycles wherein no

warps are issued. Inactive cycles can be categorized into the following three stalls. All the results are

normalized to that of LRR:

 Idle, in which all available warps are issued to the pipeline, and none of these are ready to execute

the next instruction. The following are possible reasons: warps are waiting at the barrier, empty I-

buffer, and control hazard.

 Scoreboard stall, in which all available warps wait for data from memory. The scoreboard prevents

WAW and RAW dependency hazards by tracking which registers would be written to but has not

yet been written to because it is waiting for its results back to the register file.

 Pipeline stall, when all the execution pipelines are full regardless of having valid instructions with

available operands. It occurs because of the limited number of existing execution units.

Viet Tan Vo and Cheol Hong Kim

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 | 1167

Fig. 6. Details of stalls in LRR, GTO, and KAWS scheduler.

The warp sharing mechanism enables warps that fall into the pipeline stall to be issued in different

warp schedulers by available operand collector and execution units. That is, the available resources are

utilized. Thus, pipeline stall reduction over most of the benchmarks is predictable. The larger the

reduction in pipeline stalls and total stalls, higher is the increase in resource usage. Unlike pipeline stall,

our concept introduces more scoreboard stalls compared with LRR. This is because it increases the

communication traffic among multiple warp schedulers, which can cause conflict in the sharing of OCU.

In general, this tradeoff is unavoidable and is more advantageous than a reduction in performance. KAWS

presents a substantial decrease in total stall cycles in HS and QRG. This results in a good performance

gain for these benchmarks. As shown in Fig. 6, KAWS produces more stall cycles in MRI, thereby

degrading the IPC performance by 4.74% compared with that of LRR. Nonetheless, the performance of

KAWS is higher than that of GTO by 7.5% owing to the coordination with kernel-aware warp scheduling.

On an average, our implementation reduces pipeline stall and total stall by 17.35% and 1.82%,

respectively, compared with those of LRR.

5. Conclusion

In this study, we analyzed the hardware underutilization owing to a deficiency of available CTAs when

kernel execution approaches completion. Our kernel-aware warp scheduler switches to a progress-based

scheduling policy immediately as the kernel releases its final CTA. The scheduler prioritizes warps based

on the CTA progress in which warps are involved. The objective is to reduce the execution time of

subsequently issued CTAs while prolonging the execution time of previously issued CTAs, so that the

CTAs complete their execution almost simultaneously. Therefore, a new kernel can be launched earlier

to prevent resource underutilization.

Moreover, we coordinated the kernel-aware warp scheduling and warp sharing mechanism (KAWS)

to further improve hardware utilization. The controller detects the warp schedulers whose OCUs are free

to share stalling warps from other warp schedulers. Thereby, pipeline stall is averted, and the available

execution units are utilized. Although there is a drawback of escalation in scoreboard stall, it is

compensated for by the reduction in pipeline stall and total stall under various types of workloads. Our

experiments demonstrated that on an average, KAWS outperformed LRR and GTO by 7.97% and 3.26%,

respectively. We plan to investigate the methods to adapt the proposed KAWS mechanism to more

advanced warp schedulers for upcoming GPUs in the future.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

L
R
R

G
T
O

K
A
W
S

SC PF BT HS MRI QRG 3DCV 3MM RN Average

Pipeline stall Idle Scoreboard stall

KAWS: Coordinate Kernel-Aware Warp Scheduling and Warp Sharing Mechanism for Advanced GPUs

1168 | J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the

Korean government (MSIT) (No. 2021R1A2C1009031).

References

[1] T. G. Rogers, M. O'Connor, and T. M. Aamodt, “Cache-conscious wavefront scheduling,” in Proceedings of

2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, Vancouver, Canada, 2012, pp.

72-83.

[2] H. Asghari Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-Ghazaleh, “CORF: coalescing operand

register file for GPUs,” in Proceedings of the 24th International Conference on Architectural Support for

Programming Languages and Operating Systems, Providence, RI, 2019, pp. 701-714.

[3] C. T. Do, J. M. Kim, and C. H. Kim, “Application characteristics-aware sporadic cache bypassing for high

performance GPGPUs,” Journal of Parallel and Distributed Computing, vol. 122, pp. 238-250, 2018.

[4] X. Chen, L. W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W. M. Hwu, “Adaptive cache management for

energy-efficient GPU computing,” in Proceedings of 2014 47th Annual IEEE/ACM International Symposium

on Microarchitecture, Cambridge, UK, 2014, pp. 343-355.

[5] S. Y. Lee, A. Arunkumar, and C. J. Wu, “CAWA: coordinated warp scheduling and cache prioritization for

critical warp acceleration of GPGPU workloads,” ACM SIGARCH Computer Architecture News, vol. 43, no.

3S, pp. 515-527, 2015.

[6] M. Lee, G. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “iPAWS: instruction-issue pattern-based adaptive warp

scheduling for GPGPUs,” in Proceedings of 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA), Barcelona, Spain, 2016, pp. 370-381.

[7] J. Liu, J. Yang, and R. Melhem, “SAWS: synchronization aware GPGPU warp scheduling for multiple

independent warp schedulers,” in Proceedings of 2015 48th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), Waikiki, HI, 2015, pp. 383-394.

[8] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt, “Analyzing CUDA workloads using a

detailed GPU simulator,” in Proceedings of 2009 IEEE International Symposium on Performance Analysis

of Systems and Software, Boston, MA, 2009, pp. 163-174.

[9] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim: an extensible simulation framework for

validated GPU modeling,” in Proceedings of 2020 ACM/IEEE 47th Annual International Symposium on

Computer Architecture (ISCA), Valencia, Spain, 2020, pp. 473-486.

[10] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron, “Rodinia: a benchmark suite

for heterogeneous computing,” in Proceedings of 2009 IEEE International Symposium on Workload

Characterization (IISWC), Austin, TX, 2009, pp. 44-54.

[11] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K. Skadron, “A characterization of the Rodinia

benchmark suite with comparison to contemporary CMP workloads,” in Proceedings of IEEE International

Symposium on Workload Characterization (IISWC), Atlanta, GA, 2010, pp. 1-11.

[12] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssari, G. D. Liu, and W. W. Hwu,

“Parboil: a revised benchmark suite for scientific and commercial throughput computing,” Center for

Reliable and High-Performance Computing, University of Illinois at Urbana-Champaign, Champaign,

IL, Technical Report No. IMPACT-12-01, 2012.

Viet Tan Vo and Cheol Hong Kim

J Inf Process Syst, Vol.17, No.6, pp.1157~1169, December 2021 | 1169

[13] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos, “Auto-tuning a high-level language

targeted to GPU codes,” in Proceedings of 2012 Innovative Parallel Computing (InPar), San Jose, CA, 2012,

pp. 1-10.

[14] A. Karki, C. P. Keshava, S. M. Shivakumar, J. Skow, G. M. Hegde, and J. Jeon, “Tango: a deep neural network

benchmark suite for various accelerators,” in Proceedings of 2019 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), Madison, WI, 2019, pp. 137-138.

[15] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “GPU-Qin: a methodology for evaluating the

error resilience of GPGPU applications,” in Proceedings of 2014 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), Monterey, CA, 2014, pp. 221-230.

Viet Tan Vo https://orcid.org/0000-0002-7465-6243
He received the B.S. degree in Electronics and Telecommunication Engineering from

Ho Chi Minh City University of Technology, Ho Chi Minh, Vietnam in 2018. He is

pursuing his M.S. degree in ICT Convergence System Engineering at Chonnam

National University. His research interests include computer architecture, parallel

processing, microprocessors, and GPGPUs.

Cheol Hong Kim https://orcid.org/0000-0003-1837-6631
He received the B.S. degree in Computer Engineering from Seoul National University,

Seoul, Korea in 1998 and M.S. degree in 2000. He received the Ph.D. in Electrical and

Computer Engineering from Seoul National University in 2006. He worked as a senior

engineer for SoC Laboratory in Samsung Electronics, Korea from Dec. 2005 to Jan.

2007. He also worked as a Professor at Chonnam National University, Korea from

2007 to 2020. Now he is working as a Professor at School of Computer Science and

Engineering, Soongsil University, Korea. His research interests include computer

systems, embedded systems, mobile systems, computer architecture, low power

systems, and intelligent computer systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

