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Abstract 

Modern graphics processor unit (GPU) architectures offer significant hardware resource enhancements for 

parallel computing. However, without software optimization, GPUs continuously exhibit hardware resource 

underutilization. In this paper, we indicate the need to alter different warp scheduler schemes during different 

kernel execution periods to improve resource utilization. Existing warp schedulers cannot be aware of the kernel 

progress to provide an effective scheduling policy. In addition, we identified the potential for improving 

resource utilization for multiple-warp-scheduler GPUs by sharing stalling warps with selected warp schedulers. 

To address the efficiency issue of the present GPU, we coordinated the kernel-aware warp scheduler and warp 

sharing mechanism (KAWS). The proposed warp scheduler acknowledges the execution progress of the 

running kernel to adapt to a more effective scheduling policy when the kernel progress attains a point of 

resource underutilization. Meanwhile, the warp-sharing mechanism distributes stalling warps to different warp 

schedulers wherein the execution pipeline unit is ready. Our design achieves performance that is on an average 

higher than that of the traditional warp scheduler by 7.97% and employs marginal additional hardware 

overhead. 
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1. Introduction  

Over the past decade, graphics processor units (GPUs) have become an attractive platform as these 

provide a remarkable computing paradigm for graphical applications. Incorporated with substantial 

amounts of parallel logical units and fabricated using an advanced semiconductor process, GPUs are 

displaying increasing potential for general-purpose GPU (GPGPU) applications. The key features of a 

GPU are its high degree of throughput and exceptional computation capability. From a programming 

perspective, the CUDA and OpenCL platforms are increasing its popularity among programmers and 

researchers. This has resulted in several attempts to improve the performance and energy consumption 

of GPUs. The computational capacity of GPUs originates mostly from its capability for instant context-

switching to hide long latency instructions and a substantial level of multi-threading. In general, a GPU 

achieves this using a warp scheduler. At each cycle, the warp scheduler iterates through a pool of ready 

warps (a group of 32 threads) to issue warp instructions for the next execution pipeline. 
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The traditional warp scheduler policy (loose round-robin [LRR]) assigns equal priority to each warp in 

the scheduler’s scheduling list. Thereby, all the warps achieve equivalent progress and attain long latency 

instructions almost simultaneously. This dramatically reduces the latency-hiding capability. LRR 

effectively exploits an inter-warp locality. However, it cannot utilize intra-warp locality since a nature of 

constant changing warp to issue at each cycle. Another popular warp scheduler is greedy then oldest 

(GTO) [1]. It is a standard for comparison. GTO prioritizes warps in a better manner. Intra-warp locality 

is preserved because the GTO scheduler continues to issue the same warp until it stalls, before moving 

to the oldest warp to be issued. The warp scheduler plays a crucial role in GPU performance. Several 

studies have proposed various warp scheduler schemes to address different aspects of GPU architectures. 

However, this is not the case for advanced architectures. Substantial upgrades over several generations 

(including advanced memory hierarchy, high bandwidth memory, numerous execution units, and 

multiple warp schedulers) have solved diverse limitations of the GPU. This has also reduced the impact 

of the warp scheduler on the overall performance. Our experiments (the simulation setup is described in 

Section 4) show that GTO outperforms LRR by 4.7% on an average for nine applications. Therefore, to 

further improve the performance of advanced GPU architectures, we need to analyze the operation of the 

warp scheduler following a novel approach and provide a supplementary technique. 

Most earlier warp schedulers consistently applied the scheduling algorithm for the entire kernel 

execution. This is notwithstanding that the execution process involves inconsistent execution patterns 

over the kernel execution process. During one period of kernel execution, scheduling policy A may be 

more effective than scheduling policy B. In other periods, the converse may be true. In this study, we 

reveal the ineffectiveness of the application of the same warp scheduling policy over the entire kernel 

execution process. We solve this problem by proposing a simple kernel-aware warp scheduler that 

switches to a more effective scheduling policy when the kernel execution attains a certain milestone. 

Another aspect that has not been considered is the operation of multiple warp schedulers. Previous studies 

considered warp schedulers in streaming multiprocessors (SMs) to be independent of each other. 

However, each warp scheduler shares the execution workload whereby, scheduling activities may 

influence each other. Based on this observation, we propose a warp-sharing mechanism that enables each 

warp scheduler to acknowledge others warp schedulers’ activities. Consequently, it provides a more 

effective scheduling operation among multiple warp schedulers in an SM. 

This paper is organized as follows: Section 2 discusses the background organization of the baseline 

GPU and reviews the related work. In Section 3, we describe our proposed concept in detail. In Section 

4, we evaluate our implementation, analyze its advantages, and compare it with the common warp 

schedulers. Section 5 concludes the paper.  

 

 

2. Background 

2.1 GPU Architecture 

An advanced GPU architecture leverages multiple SMs to address parallel computing problems. From 

a memory perspective, each SM is equipped with an advanced memory hierarchy consisting of register 

files (RF), L1 cache, shared memory, L2 cache, and off-chip GDDR DRAM. The L1 cache is private for 

each SM and is responsible for caching temporary register spills of complex programs. In addition, 
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according to the SM configuration, shared memory is programmer visible. This enables intra-CTA 

communication to increase the reusability of on-chip data. The requests are forwarded to the L2 cache 

via interconnection if these miss the L1 cache. To handle miss requests at the L2 cache, the memory 

controller schedules the memory requests to the DRAM. At each level, missed requests are tracked by 

miss-status holding registers (MSHRs). Fig. 1 shows the detailed microarchitecture of modern GPUs. 

 

 

Fig. 1. Baseline GPU architecture. The blue components represent additional hardware in this study. 

 

Inside an SM, a scalar front-end fetches, decodes, and stores instructions in the instruction buffer (I-

buffer) indexed by warp ID. Warp instructions are scheduled and issued to the execution pipeline by the 

warp schedulers. In advanced GPU architectures, there are typically two or four warp schedulers in an 

SM. Each warp scheduler can issue a maximum of two instructions from the I-buffer per cycle to the 

available GPU cores. An operand collector unit (OCU) is assigned to a warp instruction when it is issued. 

This is performed to load a source operand value for it. Source operand requests are queued by an 

arbitrator and then sent to the RF. To reduce interconnect complexity and area cost, the OCU is designed 

as a single-ported buffer so that it receives only one operand per cycle [2]. Each instruction can have a 

maximum of three source operands. It may require more than three cycles if bank conflict occurs in the 

RF. During this time, the OCU is not available to receive new warp instruction. When all the required 

operands are collected, the instruction is ready to be issued to the SIMD (single instruction, multiple data) 

execution unit—streaming processor (SP), special function unit (SFU), and memory (MEM). In the 

Pascal architecture, four SP, four SFU, and four MEM pipeline widths correspond to four warp 

schedulers. The SP unit executes ALU, INT, and SP operations. The SFU unit executes double-precision 

(DP), sine, cosine, log, and other operations. The MEM unit is responsible for load/store operations. Each 

unit has an independent issue port from the OCU. Therefore, the warp scheduler cannot issue new warp 

instructions corresponding to an execution unit if the OCU of that unit is stalled. 

In the GPU programming model, the GPGPU application consists of one or several kernels. Each kernel 

groups the threads into cooperative thread arrays (CTAs). The threads within a CTA execute in a group 

of 32 threads called warp. All the threads in a warp execute instructions in a lock-step manner (single-

instruction multiple thread). At the SM level, the CTA scheduler assigns CTAs to each SM in each clock 

cycle until it attains the SM’s resource saturation [3]. The maximum number of CTAs that can 

concurrently run in an SM is determined by the number of threads per CTA, the configured architecture 

limit number, the per-thread register, and the shared memory usage. When all the threads in the CTA are 

completed, the CTA is marked as complete and new CTA is assigned in the next cycle. 
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2.2 Related Works 

Many prior studies have leveraged warp schedulers to improve latency-hiding capability, reduce 

branch divergence, or increase cache performance. In this section, we discuss certain well-known 

scheduling schemes and compare these with our proposed scheduler. CCWS [1] monitors cache 

contention by using a locality detector to throttle the number of active warps if the detector observes 

frequent cache eviction. Although this scheduler can reduce cache contention, it targets only cache-

sensitive applications. Chen et al. [4] proposed adaptive cache management to overcome the limitations 

of the pure cache bypassing technique. The concept is built on top of warp throttling to protect hot cache 

lines and reduce cache contention. However, the management scheme still prefers cache-sensitive 

benchmarks while employing complex hardware overhead. CAWA [5] designed a criticality predictor to 

forecast critical warps in CTA. They proposed a criticality-aware warp scheduler that prioritizes critical 

warps and a cache reuse predictor to enhance warp execution speed. The underlying concept is that 

excessive work is required to design the instruction-based and stall-based predictor. This is in addition to 

the effort required to partition the data cache dedicated to critical warp execution. iPAWS [6] utilized 

existing warp schedulers such as GTO and LRR by switching to a suitable warp scheduler based on the 

instruction pattern. However, the performance gain is limited by the maximum performance of GTO and 

LRR. The implementation also requires execution time to trade for making warp-scheduler decisions. If 

this execution time accounts for a large portion of the total execution time, it can substantially reduce the 

performance. SAWS [7] addressed the synchronization issue of multiple warp schedulers. Liu et al. [7] 

designed schedulers that coordinate with each other to reduce the barrier waiting time and thereby, 

prevent warps from being stalled at a barrier for excessively long periods. The limitation of this study is 

that it is effective only for rich-barrier synchronization applications. 

Only a few studies have been investigated to improve the resource utilization of GPUs by using warp 

schedulers. Our motivation in this work is to use the kernel-aware warp scheduling to fine-tune the 

resource allocation process by targeting the absence of multi warp scheduling policies during kernel 

execution. The proposed warp scheduler is differentiated from previous warp schedulers by employing 

two warp scheduling policies to effectively adapt to kernel execution progress. On the other hand, warp 

sharing mechanism is deviated from the lack of cooperation between multi warp schedulers within an 

SM. The combination of these two main ideas can improve the resource utilization of GPUs, resulting in 

significant performance gains. 

 

 

3. Coordinate Kernel-Aware Warp Scheduling and Warp Sharing 

Mechanism 

Resource underutilization occurs when the number of running CTAs in the SM is less than the 

maximum number of CTAs that the SM can handle. Thus, the key to the prevention of resource 

underutilization is to maximize the utilization of the SM by allocating the maximum number of CTAs to 

it. Fig. 2(a) illustrates how present GPUs waste resources during different periods of kernel execution. 

For convenient demonstration, we have used a GPU with two SMs. Assume that a kernel contains 32 

CTAs and that each SM can manage a maximum of four concurrent CTAs. First, SM_0 and SM_1 receive 

four CTAs from the CTA scheduler (one in each cycle in a round-robin manner). Whenever a CTA 
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completes execution, a new CTA is assigned to the empty CTA slot in the next cycle. At time t0, CTA26 

completes its execution in SM_1. However, no new CTA remains in the kernel to fill the CTA slot. This 

leaves three CTAs to run freely in SM_1. From that instant, SM_1 starts to exhibit more severe resource 

underutilization. The number of running CTAs in SM_1 after the completion of CTA24 and CTA29 

remain two and one, respectively. The non-availability of a sufficient number of CTAs to utilize all the 

available resources in an SM results in substantial wastage. This underutilization continues until the final 

CTA (CTA31) completes its execution. Subsequently, a new kernel is launched to fill the empty CTA 

slot in the SM. In SM_0, resource underutilization begins to occur from time t1. 

 

 

Fig. 2. Resource underutilization at the completion of kernel execution: (a) conventional kernel-unaware 

warp scheduler, (b) proposed kernel-aware warp scheduler, and (c) warp-level illustration for kernel-

aware warp scheduler. 

 

From the motivation example, we understand that resource underutilization occurs in SM_1 when any 

CTA in SM_1 (in this example: CTA26 at t0) completes its execution after SM_1 receives the final CTA 

(in this example, CTA31) from the CTA scheduler. In general, we consider the time when the final CTA 

is issued in SM_x as a milestone of resource underutilization. This is because within a short period from 

that time, SM_x would complete one running CTA without additional CTA being filled and thereby 

exhibit resource underutilization. However, it is difficult to identify the CTA that is issued last to SM_x. 

This is because each SM can receive a different number of CTAs depending on the speed with which the 

CTAs are executed. Therefore, we determine the time when the last CTA in the kernel is issued is the 

milestone of resource underutilization. After this milestone, a more efficient scheduling policy is required 

to reduce resource underutilization. We propose a kernel-aware warp scheduler. This scheduler prioritizes 

warps based on their ages during normal kernel execution. As soon as it detects the milestone when the 

final CTA in the kernel is issued, it switches to a progress-based prioritization policy to speed up the 

execution for more recently issued CTAs. Warps that belong to more recently issued CTAs are prioritized 

based on the CTA progress. We define the CTA progress as the number of instructions issued from one 

CTA. Older CTAs (or CTAs issued earlier) tend to issue more instructions and are likely to be completed 

early. Therefore, we deprioritize these to speed up younger CTAs (or CTAs issued more recently). 

Thereby, CTAs issued more recently (particularly the last issued CTA in a kernel) can be completed 
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earlier whereas the execution time of previously issued CTAs can be prolonged. As a result, all the CTAs 

are adjusted for these to be completed almost simultaneously. This implies that the SM is filled with 

running CTAs most of the time. In Fig. 2(b), immediately as CTA31 (finally issued CTA in the kernel) 

is assigned (at time = tm), a progress-based scheduling policy is applied. Initially, this policy provides the 

highest priority to warps that belong to CTA31 in SM_1 (illustrated in Fig 2(c)). For SM_0, warps from 

CTA30 are prioritized first. Then, the scheduler dynamically prioritizes warps based on the progress of 

CTA24, CTA26, CTA29 and CTA31 in SM_1; CTA25, CTA27, CTA28, and CTA30 in SM_0. Fig. 2(c) 

shows the CTA progress order for SM_1 at t2 and t3 to present how the proposed scheduler works at 

warp-level. At t2, warps in CTA31 are assigned the highest priority because the progress of CTA31 is 

slower than the other CTAs. Similarly, at t3, the warps from CTA29 are prioritized. Note that the warps 

from the same CTA have the same CTA progress, so the scheduler can prioritize them according to their 

age (oldest warp or smallest warp ID first). Consequently, in SM_1, the execution times of CTA31 and 

CTA29 can be reduced whereas those of CTA26 and CTA24 are prolonged. In SM_0, the progress-based 

policy speeds up CTA30 while lengthening the execution times of CTA25, CTA27, and CTA28. Finally, 

all the CTAs in the SM are completed almost simultaneously, which prevents resource underutilization 

and accounts for several saved cycles. Note that underutilization depends significantly on the execution 

time of the last issued CTA in the kernel. 

Our proposed warp scheduler can significantly improve the performance when there are few CTAs in 

the kernel. If the kernel consists of many CTAs, the fraction of saved cycles out of the total execution 

time is marginal. Thereby, the performance improvement is marginal. As mentioned in the Introduction 

section, the impact of the warp scheduler, particularly the scheduler that consistently employs a single 

scheduling policy for the general performance, is not apparent in modern GPU architectures such as 

Pascal. We propose a supplemental concept to improve resource utilization from a different perspective. 

The motivation is that a warp scheduler cannot issue new warp instructions if the OCU, which is supposed 

to load operands corresponding to that specific warp instruction, is unavailable. Owing to the multiple-

warp-scheduler configuration, OCUs from different warp schedulers are likely to be available. Our 

concept is to utilize these to maintain the pipeline and prevent pipeline stall. This concept is called “warp 

sharing mechanism.” Fig. 3 illustrates how the mechanism works. Assume that eight warps are scheduled 

in four warp schedulers. After the decode stage, we can determine (1) the type of instructions of each 

warp by scanning the I-buffer and (2) which execution units are supposed to execute these. S0 denotes 

Warp scheduler 0, and w0-mem indicates that Warp 0 is carrying an instruction that would be executed 

in the MEM unit. Similarly, sp and sfu denote the instructions to be executed by the SP and SFU units, 

respectively. Presently, S0 cannot issue w0 and w4 because the OCU for the MEM unit corresponding to 

S0 is unavailable. An identical scenario occurs with w6 at S2, and w3 and w7 at S3. Meanwhile, the OCU 

for the MEM unit corresponding to S1 is free. However, S1 does not issue warp instruction because the 

instructions w1 and w5 are supposed to issue the OCU for the SP and SFU units, respectively. We propose 

a new hardware component called “warp-sharing control unit.” This unit can be aware of all the OCU 

statuses and simultaneously collect instruction information from I-buffer to make warp-sharing decisions. 

In this example, the warp-sharing control unit enables the memory instruction of w0 to be issued by S1. 

Therefore, the OCU for the MEM unit of S1 is utilized. Although w4, w6, w3, and w7 also carry memory 

instruction, w0 is prioritized over these because it is the oldest warp. By applying the same rule, the warp-

sharing control unit permits w5 and w1 to be issued by S2 and S3, respectively. This is because OCUs 
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for the SFU and SP units in these warp schedulers are available. The primary goal of improving resource 

utilization is achieved. 

 

 

Fig. 3. Warp-sharing mechanism. 

 

In terms of hardware overhead for the kernel-aware warp scheduler, we used 32 instruction counters 

to maintain the entire CTA progress. We used a 4 B register per CTA to record the number of warp 

instructions issued during CTA execution. This consumes 4×32 bytes of additional storage, where 32 is 

the maximum number of CTAs per SM in the Pascal architecture. Therefore, 128 B per SM is adequate 

for storage overhead. As shown in Fig. 4(a), we use an additional comparator to be aware of the kernel 

execution. When the number of issued CTAs becomes equal to the total number of CTAs in the kernel 

(i.e., immediately after the CTA scheduler issues the final CTA in the kernel), the comparator sends a 

notification signal to the warp scheduler to switch to a progress-based scheduling policy. A more effective 

warp scheduler is selected to improve resource utilization. 

Fig. 4(b) illustrates the hardware implementation of the warp-sharing mechanism. The warp scheduler 

and OCU for each execution unit are stacked in four layers. This illustrates that there are four warp 

schedulers and four corresponding OCUs for each execution unit inside the SM. The “warp sharing 

control unit” scans the opcode of each warp instruction (indexed by warp ID) from the I-buffer. Each 

warp instruction type is classified using an instruction classifier to identify the execution unit that should 

be employed for individual warp instruction. The output is the warp ID information corresponding to 

each execution unit, which indicates the warp that can be shared among warp schedulers. The shared 

warp IDs are transferred only to suitable warp schedulers via a transmission gate (TX1, TX2, and TX3) 

if the availability requirements are satisfied. The conditions to switch on the TX are combined by an 

AND gate fed by “in” input status from OCUs. The AND gate functions as a requirement examiner. It 

sends the enable signal to the TX only when the OCU conditions are satisfied. In general, the warp ID 

corresponding to the SP execution unit is passed through TX1 to Warp scheduler x if the OCU for the SP 

execution unit that connects to this warp scheduler is available. In addition, other OCUs for SP execution 

units that connect to other warp schedulers are unavailable. Thus, the OCU and SP execution units 

corresponding to Warp scheduler x are utilized. Similarly, TX2 and TX3 are dedicated to the SPU and 

MEM warp instruction transmissions, respectively. Our warp sharing control unit is designed to read the 

I-buffer and OCU statuses in each clock cycle between the decode stage and issue stage. The operation 

of this unit relies mainly on simple logic gates. Therefore, it is fast and reasonably low-cost owing to the 

inexpensive logic devices. 
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Fig. 4. Details of hardware implementation. Additional hardware (in blue) and how these communicate 

with existing components in the SM. (a) Employed comparator and counter for kernel-aware warp 

scheduler. (b) Warp sharing control unit to manage the sharing mechanism. 

 

 

4. Evaluation 

We implemented kernel-aware and warp-sharing concepts on the cycle-level simulator GPGPU-Sim 

v4.0 [8,9]. The simulator carves the GPU architecture in a C-like environment and provides a signi-

ficantly high correlation with the actual GPU. In the fourth version, the simulator supports various highly 

advanced GPU architectures. We select the Pascal configuration (Titan X; it is a cutting-edge GPU 

architecture) as a baseline for comparison because it is highly effective, stable, and highly popular (as 

indicated by its market share). We consider that our implementation works effectively with other GPU 

generations because these continue to rely on Pascal, improve machine learning features, and/or reduce 

device size and energy consumption by using more advanced semiconductor processes. Table 1 lists the 

important parameters used in our configuration. 

We evaluated the performance based on nine benchmarks—Streamingcluster (SC), Pathfinder (PF), 

B+tree (BT), Hotspot (HS), Mri-q (MRI), Quasirandomgenerator (QRG), 3Dconvolution (3DCV), three 

MatrixMultiplication (3MM), and ResNet (RN)—selected from several popular GPU benchmark suites: 

Rodinia [10,11], Parboil [12], Polybench [13], CUDA SDK, and Tango [14]. These benchmarks cover 

various aspects of actual GPU computations, including traditional cache-sensitive, memory-intensive, 

compute-intensive, and machine-learning computation on a GPU. Most of the benchmarks were 

simulated to completion or until the variation is negligible in the case of time-consuming benchmarks. 

 

Table 1. Pascal configuration (Titan X) 

Parameter Value 

SIMT 28 cores 

Clock 1417 (core) : 1417 (interconnection) : 1417 (L2) : 2500 (Dram) 

Max. # of CTA per SM 32 

L1 data cache 24 kB, 48-way 

L1 instruction cache 4 kB, 48-way 

L2 cache 3 MB 

# of memory controllers 12 

# of warps scheduler per SM 4 
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4.1 Performance 

Fig. 5 shows a comparison of the IPC performance of the KAWS with that of the default built-in warp 

scheduler. All the results have been normalized to the baseline configuration using the LRR policy. On 

an average, KAWS achieves a performance that is 7.97% and 3.26% higher than those of LRR and GTO, 

respectively. Note that although GTO is one of the most effective warp schedulers, its performance is 

only 4.7% higher than that of LRR on an average in advanced GPU architectures such as Pascal. Overall, 

the performance of the KAWS is higher than that of LRR for eight out of the nine benchmarks. In 

particular, KAWS shows a significant improvement in RN (19.91%), HS (19.64%), and 3DCV (13.88%) 

because KAWS displays a significantly high performance in terms of latency hiding. These benchmarks 

commonly execute uniform instruction patterns. LRR is likely to achieve equal warp progress among 

warps. The result is that warps attain long latency instructions almost simultaneously, which implies that 

LRR provides low latency hiding capability. MRI computes a matrix that represents the scanner 

configuration for calibration [15]. It has a large number of iterations and a strong inter-warp locality 

(which explains why LRR is the best scheduler for MRI), whereby the performance of GTO and KAWS 

degrades. However, KAWS performs more effectively than GTO in MRI. The SC is a memory-intensive 

benchmark. A large number of stall cycles caused by cache misses halts GTO and KAWS to result in an 

apparent performance gain over the LRR for this benchmark. 

 

 

Fig. 5. Performance comparison. 

 

As described earlier, KAWS prioritizes warps according to their ages during normal kernel execution. 

This is similar to GTO without greedy warp. Therefore, KAWS inherits the capability to hide latency by 

distributing unequal progress among warps. In general, KAWS exhibits higher performance than GTO 

for nearly all the evaluated benchmarks because it employs warp sharing and kernel-aware imple-

mentation. KAWS can achieve a performance gain of up to 7.5% and 7.3% over GTO in MRI and 3MM, 

respectively. These benchmarks substantially exploit matrix computations, which require continuous 

computation and memory instructions. Meanwhile, the warp-sharing mechanism is an effective means 

for increasing the usage of computing and memory execution units within an SM. BT is the only 

benchmark wherein KAWS achieves almost zero improvement over GTO. This is because BT is a rich-

synchronization application. It comprises several parallel regions between barrier instructions, whereas 

KAWS is not designed to identify barrier instructions. In this case, sharing warp has no impact because 

warps are generally stalled at the barrier regardless of the scheduler that issues these. 

 

4.2 Resource Utilization 

The proposed kernel-aware warp scheduling operates to reduce the execution time of the last issued 
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CTA in the kernel while prolonging that of previously issued CTAs. This strategy results in an almost 

simultaneous completion of all the CTAs and thereby, a reduction in resource underutilization. Hence, 

the key metric to evaluate the effect of warp scheduling on SM utilization is the execution time of the 

last issued CTA in the kernel. Moreover, this time is also correlated to the execution time of the entire 

kernel. Table 2 shows a comparison of the average execution time of the last CTA in the kernel between 

KAWS and the GTO policy. We compare our design only with GTO because resource underutilization 

generally occurs in GTO. In LRR, prioritization is intrinsically distributed equally to all the warps, 

whereby CTAs are completed almost simultaneously. KAWS and GTO are not comparable with the LRR. 

On an average, KAWS reduces the last CTA execution time by 5.09% compared with that of GTO. In 

particular, there is a significant degradation of execution time in MRI and QRG. It corresponds to 

performance gains of 7.5% and 4.81%, respectively, over GTO. As mentioned in Section 3, kernel-aware 

warp scheduling contributes significantly to the overall performance when the number of CTAs in the 

kernel is not excessive. This is the reason for the significant improvement in MRI and QRG, which 

contain 128 CTAs per kernel. Although KAWS can considerably reduce the execution time of the last 

issued CTA in HS, it does not significantly improve the overall performance because the HS kernel 

consists of many CTAs. Meanwhile, KAWS increases the last CTA execution time by 3.35% in RN. 

However, its effect on the performance is compensated for by the effectiveness of the warp-sharing 

mechanism to prevent performance degradation. 

 

Table 2. Average execution time (cycle) of last issued CTA in kernel 

Benchmark 
Number of  

kernels 

Number of CTAs 

per kernel 

Last CTA execution time Normalized to 

GTO (%) GTO KAWS 

SC 140 128 119511.6 117218.33 98.08 

PF 5 463 11914.4 11631.6 97.63 

BT 2 6000 or 10000 5300 5291 99.83 

HS 1 1849 3372 2878 85.35 

MRI 4 128 200378.3 186167.67 92.91 

QRG 42 128 57937.19 48287.57 83.34 

3DCV 254 256 2994.29 2859.68 95.50 

3MM 3 1024 199260.7 195657.33 98.19 

RN 38 64 or 256 300766.9 310851.34 103.35 

Average - - - - 94.91 

 

Fig. 6 presents a breakdown of the portion of SM inactive cycles, which are the cycles wherein no 

warps are issued. Inactive cycles can be categorized into the following three stalls. All the results are 

normalized to that of LRR: 

 Idle, in which all available warps are issued to the pipeline, and none of these are ready to execute 

the next instruction. The following are possible reasons: warps are waiting at the barrier, empty I-

buffer, and control hazard. 

 Scoreboard stall, in which all available warps wait for data from memory. The scoreboard prevents 

WAW and RAW dependency hazards by tracking which registers would be written to but has not 

yet been written to because it is waiting for its results back to the register file. 

 Pipeline stall, when all the execution pipelines are full regardless of having valid instructions with 

available operands. It occurs because of the limited number of existing execution units. 
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Fig. 6. Details of stalls in LRR, GTO, and KAWS scheduler. 

 

The warp sharing mechanism enables warps that fall into the pipeline stall to be issued in different 

warp schedulers by available operand collector and execution units. That is, the available resources are 

utilized. Thus, pipeline stall reduction over most of the benchmarks is predictable. The larger the 

reduction in pipeline stalls and total stalls, higher is the increase in resource usage. Unlike pipeline stall, 

our concept introduces more scoreboard stalls compared with LRR. This is because it increases the 

communication traffic among multiple warp schedulers, which can cause conflict in the sharing of OCU. 

In general, this tradeoff is unavoidable and is more advantageous than a reduction in performance. KAWS 

presents a substantial decrease in total stall cycles in HS and QRG. This results in a good performance 

gain for these benchmarks. As shown in Fig. 6, KAWS produces more stall cycles in MRI, thereby 

degrading the IPC performance by 4.74% compared with that of LRR. Nonetheless, the performance of 

KAWS is higher than that of GTO by 7.5% owing to the coordination with kernel-aware warp scheduling. 

On an average, our implementation reduces pipeline stall and total stall by 17.35% and 1.82%, 

respectively, compared with those of LRR. 

 

 

5. Conclusion 

In this study, we analyzed the hardware underutilization owing to a deficiency of available CTAs when 

kernel execution approaches completion. Our kernel-aware warp scheduler switches to a progress-based 

scheduling policy immediately as the kernel releases its final CTA. The scheduler prioritizes warps based 

on the CTA progress in which warps are involved. The objective is to reduce the execution time of 

subsequently issued CTAs while prolonging the execution time of previously issued CTAs, so that the 

CTAs complete their execution almost simultaneously. Therefore, a new kernel can be launched earlier 

to prevent resource underutilization. 

Moreover, we coordinated the kernel-aware warp scheduling and warp sharing mechanism (KAWS) 

to further improve hardware utilization. The controller detects the warp schedulers whose OCUs are free 

to share stalling warps from other warp schedulers. Thereby, pipeline stall is averted, and the available 

execution units are utilized. Although there is a drawback of escalation in scoreboard stall, it is 

compensated for by the reduction in pipeline stall and total stall under various types of workloads. Our 

experiments demonstrated that on an average, KAWS outperformed LRR and GTO by 7.97% and 3.26%, 

respectively. We plan to investigate the methods to adapt the proposed KAWS mechanism to more 

advanced warp schedulers for upcoming GPUs in the future. 
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