• 제목/요약/키워드: Resonant elements

검색결과 126건 처리시간 0.03초

T형 마이크로스트립 안테나의 면적 비에 따른 최적 설계 (Optimized Design of T-Shaped Microstrip Antenna with Various Dimensions)

  • 김진복;이중근
    • 대한전자공학회논문지TC
    • /
    • 제47권5호
    • /
    • pp.53-59
    • /
    • 2010
  • 안테나의 급전방식은 동축 프로브, 커플링, 기생소자 그리고 임피던스 정합회로를 사용하는 다양한 형태가 있다. 본 논문에서 제안하는 안테나의 급전방식은 제작이 용이한 마이크로스트립 라인 방식이다. 본 논문은 2.0 GHz 대역을 위한 T형 마이크로스트립 안테나 패치 부분의 면적 비에 따른 안테나 특성에 관한 연구이며, HFSS(High Frequency Structure Simulator) 프로그램을 사용하여 해석하였다. 연구 결과 기존의 면적 비를 갖지 않는 기본 마이크로스트립 안테나보다 T형 마이크로스트립 안테나 패치부분의 면적 비를 40.38 %로 갖는 형태로 설계하면, 2.0 GHz 대역에서 사용되는 안테나의 공진주파수 특성, 반사손실 특성 그리고 복사 패턴 등을 최적화 할 수 있다는 것을 확인하였다.

Compact Band-notched UWB Antenna Design Based On Transmission Line Model

  • Zhu, Xiaoming;Yang, Xiaodong;Chen, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.338-343
    • /
    • 2015
  • In order to avoid the interference from existing narrowband communication systems, this paper proposes a compact band-notched UWB (ultra wideband) antenna with size of $12mm{\times}22mm{\times}1.6mm$. Transmission line model is applied to analyzing wide impedance matching characteristic of the modified base antenna, which has a gradual stepped impedance feeder structure. The proposed antenna realizes dual band-notched function by combining two biased T-shaped parasitic elements on the rear side with a window aperture on the radiation patch. The simulation current distributions of the antenna reflect resonant suppression validity of the two methods. In addition, the measured radiation characteristics demonstrate the proposed antenna prevents signal interference from WLAN (5.15-5.825GHz) and WiMAX (3.4-3.69GHz) effectively, and the measured patterns show the antenna omnidirectional radiation in working frequencies.

Piezoelectric shunt damping by synchronized switching on negative capacitance and adaptive voltage sources

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chen, JinJin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.396-411
    • /
    • 2014
  • Synchronized switch damping (SSD) techniques have recently been developed for structural vibration control using piezoelectric materials. In these techniques, piezoelectric materials are bonded on the vibrating structure and shunted by a network of electrical elements. These piezoelectric materials are switched according to the amplitude of the excitation force to damp vibration. This paper presents a new SSD technique called 'synchronized switch damping on negative capacitance and adaptive voltage sources' (SSDNCAV). The technique combines the phenomenon of capacitance transient charging and electrical resonance to effectively dampen the structural vibration. Also, the problem of stability observed in the previous SSD techniques is effectively addressed by adapting the voltage on the piezoelectric patch according to the vibration amplitude of the structure. Analytical expressions of vibration attenuation at the resonance frequency are derived, and the effectiveness of this new technique is demonstrated, for the control of a resonant cantilever beam with bonded piezoelectric patches, by comparing with SSDI, SSDVenh, and SSDNC techniques. Theoretical predictions and experimental results show the remarkable vibration damping capability of SSDNCAV technique, which was better than the previous SSD techniques. The broadband vibration control capabilities of SSDNCAV technique are also demonstrated, which exceed those of previous SSD techniques.

알루미늄 합금의 레이저 용접시 유기하는 플라즈마의 스펙트럼 분석 (Spectral Analyses of Plasma Induced by Laser Welding of Aluminum Alloys)

  • 김종도;최영국;김영식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.292-300
    • /
    • 2001
  • The paper describes spectroscopic characteristics of plasma induces in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg lines, as well as the intense molecular spectra of A10 and Mg0 formed by chemical reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere, Mg0 and AI0 spectra vanished, but AIH spectrum was detected. The hydrogen source was presumably hydrogen dissolved in the base metals, water absorbed on the surface oxide layer, or $H_2$ and $H_2O$ in the shielding gas. The resonant 1ines of Al and Mg were strongly self-absorbed, in particular, self-absorption of the Mg 1ine was predominant. These results show that the laser induced plasma was made of metal1ic vapor with relatively low temperature and high density.

  • PDF

초고속 공작기계용 Hybrid Poymer Concrete bed 의 설계와 제작 (Design and manufacture of hybrid polyrnerconcrete bed for high speed machine tool)

  • 서정도;임태성;이대길;김태형;박보선;최원선
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.404-409
    • /
    • 2004
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool life. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. Also, co-cure bonding method for functional part mounting was exhibited experimentally, by which manufacturing time and cost for polymer concrete bed will be remarkably reduced.

  • PDF

메타물질 구조를 이용한 전기적 소형 안테나의 설계 (Design of an Electrically Small Antenna Using Metamaterial Structure)

  • 이홍민
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권1호
    • /
    • pp.24-30
    • /
    • 2010
  • 본 논문에서는 전기적 소형 모노폴 형태의 안테나가 제시되었다. 크기가 매우 짧은 (${\iota}{\approx}{\lambda}_g/15$ ) 모노폴은 용량성 소자로 동작하며, 접지면 위에 놓여진 개방형 슬롯구조는 유도성 소자로 동작하므로, 이 들 두 소자를 결합시킨 구조는 LC 공진기를 형성하게 된다. 안테나에 대한 등가회로 모델 은 안테나의 해석 및 설계의 정확성을 파악하기 위하여 사용되었다. 제안된 안테나는 매우 작은 전기적인 크기를 갖고 있으나 양호한 성능을 나타내고 있다. 측정된 안테나의 최대 이득과 효율은 주파수 2.1 GHz에서 각각 3.6 dBi 및 77.8 %를 나타내었다.

  • PDF

Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구 (Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed)

  • 서정도;이대길;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF

펄스 YAG 레이저 용접시 유기하는 플라즈마의 스펙트럼선 동정과 발광특성 (Spectral Line Identification and Emission Characteristics of the Laser-Induced Plasma in Pulsed Nd:YAG Laser Welding)

  • 김종도
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.360-368
    • /
    • 1999
  • The paper describes spectroscopic characteristics of plasma induced in the pulsed YAG laser welding of alloys containing a large amount of volatile elements. The authors have conducted the spectroscopic analyses of laser induced Al-Mg alloys plasma in the air and argon atmosphere. In the air environment the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn and singly ionized Mg lines as well as the intense molecular spectra of ALO and MgO formed by chemi-cal reactions of evaporated Al and Mg atoms from the pool surface with oxygen in the air. In argon atmosphere MgO and AlO spectra vanished but AlH spectrum was detected. the hydrogen source was presumable hydrogen dissolved in the base metals water absorbed on the surface oxide layer or $H_2$ and $H_2O$ in the shielding gas. The resonant lines of Al and Mg were strongly self-absorbed in particular self-absorption of the Mg line was predominant. These results show that the laser induced plasma was made of metallic vapor with relatively low temperature and high density.

  • PDF

리액턴스 장하 강제 공진형 지향성 틸트 다이폴 안테나 소자 (Reactance Loaded Dipole Antennal Elements for Beam Tilting with Forced Resonance)

  • 김기채;권익승;서영석;박용완
    • 한국전자파학회논문지
    • /
    • 제11권2호
    • /
    • pp.278-285
    • /
    • 2000
  • 본 논문에서는 급전점에서의 입력 임피던스 정합을 위해 리액턴스 소자를 이용한 지향성 틸트 다이폴 안테나 소자의 기본 특성을 검토하고 있다. 방사 지향성의 틸트는 급전점의 위치를 적절히 선돼하여 설현시키고, 틸트각 을 크게 변화시키지 않으면서 안테나를 강제적으로 공진시킬 수 있도록 리액턴스 소자를 장하시키고 있다. 수치 계산 결과, 방사 지향성의 틸트각을 크게 변화시키지 않으면서 강제공진을 취할 수 있도록 하기 위해서는 리액턴 스 소자를 급전점 부판에 장하시켜야 한다는 것을 확인할 수 있었다. 제안한 안테나의 길이를 $0,8\lambda$, 급전점을 $0.2\lambda$로 선택하였을 경우, 주 지향성의 틸트각은 57.7도가 얻어졌으며 전력이득은 최대 8,6 dB를 얻을 수 있었다.

  • PDF

압전 횡효과를 이용한 무지향성 주파수가변 초음파트랜스듀서 (Frequency Controllable Wide-Beam Ultrasonic Transducer with Transverse Mode)

  • 김정순;김무준;하강렬;강갑중
    • 센서학회지
    • /
    • 제13권6호
    • /
    • pp.417-423
    • /
    • 2004
  • In order to obtain wide-beam characteristics and variable resonant frequency of a ultrasonic transducer for the array source, an electrode of transverse mode piezoelectric vibrator is divided, and an electronic inductance is connected to the divided electrodes. The electronic inductance is made by GIC (General Impedance Converter) circuit. Because the GIC circuit is made of OP-Amps and other passive elements, the value of the inductance can be selected easily. As the results, the electronic inductance is variable in the range from 0.2 mH to 1.2 mH. Using the inductance, the resonance frequency of the transducer can be changed in the range from 73 kHz to 86 kHz. In the directivity of the transducer, it is confirmed that the beam width of the transducer is wider than $80^{\circ}$ at -3 dB in water.