• Title/Summary/Keyword: Resonant Zero voltage switching

검색결과 358건 처리시간 0.026초

LLC 공진형 컨버터를 활용한 저 반복·고출력 Nd:YAG 레이저의 출력특성 (The Output Characteristics of Low Repetition·High Power Nd:YAG Laser Using LLC Resonant Converter)

  • 이희창
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.286-291
    • /
    • 2015
  • Nd:YAG 레이저의 출력조절을 위하여 LLC 공진 컨버터를 사용하였다. ZVS(Zero Voltage Switching) 방식을 LLC 공진형 컨버터에 적용함으로써 스위칭 손실을 최소화하였다. 금속박막의 점용접과 같은 레이저가공에 있어서 단일 펄스에 대한 출력에너지가 가공특성을 결정하므로, 적절한 목표출력으로 단일펄스 당 50 [J]로 결정하였다. 따라서 레이저 출력은 출력전류를 변화시켜가면서 측정하고 분석하였다. 이 때, 전류는 커패시터의 충전전압의 크기에 따라 변한다. 이러한 결과로부터 충전 커패시터의 용량 12,000 [${\mu}F$], 반복율이 1 [Hz]일 때, 방전전압 620 [V], 방전전류 861 [A]에서 58.2 [J]의 레이저빔 최대 출력을 얻음으로써 전기에너지 입력에 대한 레이저빔 출력에너지 변환효율은 2.52%를 달성하였다.

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

Watkins-Johnson 공진형 DC-DC 컨버터의 정상상태 해석과 최적설계 (Steady State Analysis and Design of a Resonant Switching Watkins-Johnson DC-DC Converter)

  • 안태영
    • 전자공학회논문지S
    • /
    • 제36S권8호
    • /
    • pp.113-122
    • /
    • 1999
  • 본 논문에서는 스위칭 손실을 저감시키고, 높은 주파수 동작에 적합한 새로운 Watkins - Johnson 공진형 컨버터를 제안하였다. 정상상태 해석에서는 제안 된 공진형 컨버터의 전압이득은 스위칭 주파수에 의존하게 된다는 것을 밝혔다. 따라서 컨버터의 출력전압을 안정시키기 위해서는 부하 전류 변화에 따라 스위칭 주파수도 함께 변화시켜야한다. 또한 해석결과를 토대로, 스위치의 전압 스트레스를 최소화시키고, 영전압 스위칭되는 조건하에서 컨버터의 공진소자 값을 결정할 수 있는 최적의 설계방식을 제시하였다. 끝으로 Watkins-Johnson 공진형 컨버터의 실험회로를 구성하여 최적 설계방식의 타당성을 입증하였다.

  • PDF

부분공진형 고역률 승강압 AC-DC 컨버터 (A New partial resonant buck-boost AC-DC converter for high power factor)

  • 신현식;서기영;권순걸;곽동걸;이현우;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.512-515
    • /
    • 1994
  • This paper propose the high power factor and efficiency buck-boost AC-DC converter because the input current is made sinusoidal wave in single phase alternating current source. The proposed converter is able to minimize switching loss by the partial resonant switching which is for switching devices to operate the zero voltage switching (ZVS) or zero current switching(ZCS) without increasing their voltage and current stresses.

  • PDF

A Novel Soft-Switching Full-Bridge PWM Converter with an Energy Recovery Circuit

  • Lee, Dong-Young;Cho, Bo-Hyung;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.809-821
    • /
    • 2009
  • This paper proposes a new phase-shift full-bridge DC-DC converter by applying energy recovery circuits to a conventional full-bridge DC-DC converter in plasma display panel applications. The converter can achieve soft-switching in main-switches by an extra auxiliary resonant network even with the wide operating condition of both output load and input voltage. The un-coupled design guidelines to the main bridge-leg component parameters for soft-switching operation contribute to conduction loss reduction in the transformer primary side leading to efficiency improvement. The auxiliary switches in the resonant network also operate in zero-current switching. This paper analyzes the operation modes of the proposed scheme and presents the key design guidelines through steady state analysis. Also, the paper verifies the validity of the circuits by hardware experiments with a 1kW DC/DC converter prototype.

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF

결합인덕터와 직렬 공진을 이용한 비절연 다중 LED 전류 평형 기법 (Nonisolated Multichannel LED Current Balancing Scheme Using Coupled Inductor and Series Resonant Converter)

  • 신유용;홍다헌;최병조;차헌녕
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.249-255
    • /
    • 2021
  • A novel current balancing technique for multichannel light-emitting diode (LED) that uses a series resonance and coupled inductor is proposed in this paper. The proposed LED driver balances output currents through frequency control and enables zero-voltage switching. The proposed converter utilizes the charge balance condition of the resonant capacitor and the current sharing function of the coupled inductor to achieve whole LED current balancing without an additional controller. The proposed coupled inductor can integrate the current balancing function and the resonant inductor, so the power density can be increased by reducing the number of magnetic devices. A 40 W prototype is built to verify the validity of this LED driver, and the experimental results are successfully obtained.

공진 DC-Link 인버터의 공진 초기전류의 보상에 관한 연구 (Resonance initial current compensation for Resonant DC-Link inverter)

  • 곽동걸;서기영;권순걸;이현우;우정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1136-1141
    • /
    • 1992
  • This paper proposes a control technique to obtain high frequency quasi sinusoidal DC-Link waveform permitting zero-voltage-switching(ZVS). This operation results in reduction of commutation stress and switching losses in the power devices because they cause no switching loss in principle. But in existing control methods, the resonant capacitor voltage is not frequently made of zero-cross oscillation. We propose an optimum control stratege which can sustain oscillation and keep the capacitor voltage at an allowable level. Some experimental results are included to confirm the validity of the analytical results.

  • PDF

Three-Phase AC-to-DC Resonant Converter Operating in High Power Factor Mode in High-Voltage Applications

  • Chaudhari, Madhuri A.;Suryawanshi, Hiralal M.;Kulwal, Abhishek;Mishra, Mahesh K.
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.60-73
    • /
    • 2008
  • In this paper a three-phase ac-to-dc resonant converter with high input power factor and isolated output is proposed. To improve the input power factor of the converter, high frequency current is injected into the input of the three-phase diode bridge rectifier. It is injected through an impedance network consisting of a series of L-C branches from the output of the high frequency three-phase inverter. A narrow switching frequency variation is required to regulate the output voltage. A design example with different design curves is illustrated along with the component ratings. Experimental verification of the converter is performed on a prototype of 3 kW, 1000 V output, operating above 300 kHz. Experimental results confirm the concept of the proposed converter. Narrow switching frequency variation is required to regulate the output voltage.

A Ringing Surge Clamper Type Active Auxiliary Edge-Resonant DC Link Snubber-Assisted Three-Phase Soft-Switching Inverter using IGBT-IPM for AC Servo Driver

  • Yoshitsugu, Junji;Yoshida, Masanobu;Hiraki, Eiji;Inoue, Kenji;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.115-124
    • /
    • 2002
  • This paper presents an active auxiliary edge-resonant DC link snubber with a ringing surge damper and a three-phase voltage source type zero voltage soft-switching inverter with the resonat snubber treated here for the AC servo motor driver applications. The operation of the active auxiliary edge-resonant DC link snubber circuit with PWM voltage is described, together with the practical design method to select its circuit parameters. The three-phase voltage source type soft-switching inverter with a single edge-resonant DC link snubber treated here is evaluated and discussed for the small-scale permanent magnet (PM) type-AC servo motor driver from an experimental point of view. In addition to these, the AC motor stator current and its motor speed response for the proposed three-phase soft-switching inverter employing Intelligent Power Module(IPM) based on IGBTS are compared with those of the conventional three-phase hard-switching inverter using IPM. The practical effectiveness of the three-phase soft-switching inverter-fed permanent magnet type AC motor speed tracking servo driver is proven on the basis of the common mode current in a novel type three-phase soft-switching inverter-fed AC motor side and the conductive noise on the mains terminal interface voltage as compared with those of the conventional three-phase hard-switching inverter-fed permanent magnet type AC servo motor driver for the speed tracking applications.