• Title/Summary/Keyword: Resonant Vibration

Search Result 427, Processing Time 0.035 seconds

An Experimental Study for Preventing the Resonance of Steam Turbine Blade (증기터빈 블레이드의 공진 방지를 위한 실험 연구)

  • 하현천;이동진;류석주
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

The Design and Performance Evaluation of a Parallelogram Type Magnetic Spring Suspension for Commercial Vehicle Seat (상용차 시트용 평행사변형구조 마그네틱 현가기구의 설계 및 성능평가)

  • Kwac, Lee Ku;Kim, Hong Gun;Shin, Hee Jae;Jung, Young Bae;Song, Jung Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Commercial drivers feel tired more than the general public, because their driving times are long and they experience more idle vibration. In this study, we developed a nonlinear model of a magnetic, linear spring seat suspension to determine the optimal design to improve ride comfort. The resonant frequency for the optimal design of the suspension was found to be 3.5 Hz, and the stiffness was analyzed through displacement-load experiments. Additionally, the vibration transmissibility was analyzed by the suspension stiffness, and the existing coil spring type vibration transmissibility was found to be 0.99. A parallelogram type magnetic spring was determined to result in a better performance than the existing spring with a vibration transmissibility of 0.823.

Experimental Investigation on Vibration Control Performances of the Piezoelectric Hybrid Mount (압전 하이브리드 마운트의 진동제어 성능에 대한 실험적 고찰)

  • Han, Young-Min
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.203-209
    • /
    • 2020
  • A hybrid mount featuring rubber element and piezoelectric actuator is devised to reduce vibration when starting a vehicle engine. As a first step, a passive mount adopting rubber element is manufactured and its dynamic characteristics are experimentally evaluated. After evaluating dynamic characteristics of the manufactured inertial piezoelectric actuator, the proposed hybrid mount is then established by integrating the piezoelectric actuator with the rubber element for performance improvement at non-resonant high frequencies. A mathematical model of the established active vibration control system is formulated and expressed in the state space form. Subsequently, sliding mode controller (SMC) is designed to attenuate the vibration transmitted from the base excitation. Finally, control performances of the proposed hybrid mount are evaluated such as transmissibility in frequency domain and time responses.

Study on the In-Plane Vibration Characteristics of the Pneumatic Tires (공기압(空氣壓)타이어의 평면진동특성(平面振動特性)에 관(關)한 연구(硏究))

  • Kim, Nam Joen;Lee, Chong-Ho
    • Journal of Biosystems Engineering
    • /
    • v.12 no.4
    • /
    • pp.9-15
    • /
    • 1987
  • The vibrational characteristics of a radial-ply (155SR13 4PR) and a biased-ply tire (6.15-134PR) were investigated for examining the effects of tires with different structure on the ride characteristics of the vehicle. The natural frequencies at the tread band, mode shapes, and damping factors of two tires at the state of plane vibration were determined experimentally. The test work was performed at four levels of the inflation pressure, ranging from 171.7 kPa to 245.2 kPa, and three levels of the vertical load, deviating by 10% from the standard load designated by the Department of Transportation of the United States of America. The following results were drawn by the analysis of the test results: 1. The first-order natural frequencies of the radial-ply and the biased-ply tires at the tread band were 112 Hz and 159 Hz, respectively, at the state o f the free vibration when the inflation pressure of 196.2 kPa was applied. It was known that the biased-ply tire has higher resonant frequency than the radial-ply tire and the natural frequencies of the both tires move to the high frequency range as t he inflation pressure is increased. 2. The vibration modes of both tires were quite different. No big difference in mode shapes was examined as the inflation pressure was increased. But the natural frequencies of two tires were changed. For the radial-ply tire, no difference in mode shape was found whether the vertical load was applied or not. But a significant difference in mode shape was examined for the biased-ply tire. 3. Any difference was not found in damping factor as the different inflation pressures were applied. 4. When no vertical load was applied, damping factors of the radial-ply and biased-ply tire at the state of the natural vibration ranged from 2.6 to 5.9%, and from 4.1 to 7.8%, respectively. It was estimated that the radial-ply tire would have better cushioning than the biased-ply tire since the vertical spring rate of the radial-ply tire was much less than that of the biased-ply tire, even though the damping effect of the radial-ply tire was smaller than that of the biased-ply tire.

  • PDF

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Modal Identification and Seismic Performance Evaluation of 154kV Transformer Porcelain Bushing by Vibration Test (진동시험에 의한 154kV 변압기 부싱의 동특성 분석 및 내진성능 평가)

  • Joe, Yang-Hee;Cho, Sung-Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.5 s.51
    • /
    • pp.107-115
    • /
    • 2006
  • The power supply system is one of the most important infrafacilities which should maintain their inherent function during and after earthquakes. This study was performed to analyze dynamic characteristics and seismic performance of Korean typical 154kV transformer porcelain bushing. For the purpose of this study, actual 154kV porcelain bushings were selected and tested on the shaking table. The vibration tests consist of modal identification tests, seismic performance tests, and fragility tests. The sine sweep waves, artificial earthquake waves, and continuous resonant sine waves were used as shaking table motions. This paper describes the test specimens, shaking facilities, and test methods. Natural frequencies and damping ratios of the bushing have been evaluated from the experimental data. The failure mode and the performance level of the Korean transformer bushing have been first identified in this study.

Model Analysis of Plate using by Digital Test System (디지털 실험장치를 이용한 판의 모우드 해석)

  • Hong, Bong-Ki;Bae, Dong-Myung;Bae, Seong-Yoeng
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.39-55
    • /
    • 1993
  • Modal Analysis is the process of characterizing the dynamic properties of an elastic structure by identifying its modes of vibration. A mode of vibration is a global property of an elastic structure. That is, a mode has a specific natural frequency and damping factor which can be identified from response data at practically any point on a structure, and it has a characteristic mode shape which identifies the mode spatially over the entire structure. Modal testing is able to be performed on structural and mechanical structure in an effort to learn more about their elastic behavior. Once the dynamic properties of a structure are known its behavior can be predicted and therefore controlled or corrected. Resonant frequencies, damping factors and mode shape data can be used directly by a mechanical designer to pin point weak spots in a structure design, or this data can also be used to confirm or synthesize equations of motion for the elastic structure. These differential equations can be used to simulate structural response to know input forces and to examine the effects of pertubations in the distributed mass, stiffness and damping properties of the structure in more detail. In this paper the measurement of transfer functions in digital form, and the application of digital parameter identification techniques to identify modal parameters from the measured transfer function data are discussed. It is first shown that the transfer matrix, which is a complete dynamic model of an elastic plate structure can be written in terms of the structural modes of vibration. This special mathematical form allows one to identify the complete dynamics of the structure from a much reduced set of test data, and is the essence of the modal approach to identifying the dynamics of a structure. Finally, the application of transfer function models and identification techniques for obtaining modal parameters from the transfer function data are discussed. Characteristics on vibration response of elastic plate structure obtained from the dynamic analysis by Finite Element Method are compared with results of modal analysis.

  • PDF

Bulk Micromachined Vibration Driven Electromagnetic Energy Harvesters for Self-sustainable Wireless Sensor Node Applications

  • Bang, Dong-Hyun;Park, Jae-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1320-1327
    • /
    • 2013
  • In this paper, two different electromagnetic energy harvesters using bulk micromachined silicon spiral springs and Polydimethylsiloxane (PDMS) packaging technique have been fabricated, characterized, and compared to generate electrical energy from ultra-low ambient vibrations under 0.3g. The proposed energy harvesters were comprised of a highly miniaturized Neodymium Iron Boron (NdFeB) magnet, silicon spiral spring, multi-turned copper coil, and PDMS housing in order to improve the electrical output powers and reduce their sizes/volumes. When an external vibration moves directly the magnet mounted as a seismic mass at the center of the spiral spring, the mechanical energy of the moving mass is transformed to electrical energy through the 183 turns of solenoid copper coils. The silicon spiral springs were applied to generate high electrical output power by maximizing the deflection of the movable mass at the low level vibrations. The fabricated energy harvesters using these two different spiral springs exhibited the resonant frequencies of 36Hz and 63Hz and the optimal load resistances of $99{\Omega}$ and $55{\Omega}$, respectively. In particular, the energy harvester using the spiral spring with two links exhibited much better linearity characteristics than the one with four links. It generated $29.02{\mu}W$ of output power and 107.3mV of load voltage at the vibration acceleration of 0.3g. It also exhibited power density and normalized power density of $48.37{\mu}W{\cdot}cm-3$ and $537.41{\mu}W{\cdot}cm-3{\cdot}g-2$, respectively. The total volume of the fabricated energy harvesters was $1cm{\times}1cm{\times}0.6cm$ (height).

Dynamic Parameter Estimation of a CANDU Type Containment Using Ambient Vibration Measurements (상시진동을 이용한 CANDU형 격납건물의 동적파라미터 산정)

  • Choi, Sanghyun;Park, Sooyong;Hyun, Chang-Hun;Kim, Moon-Soo
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.188-196
    • /
    • 2012
  • Dynamic parameters such as natural frequencies can provide global stiffness information of a structure, and thus be utilized in monitoring structural integrity of large structures such as a containment. To identify the dynamic parameters without interrupting normal operation, a modal analysis method based on ambient vibration measurements should be applied. In this study, dynamic parameters of the containment of Wolsong Unit 2 are identified using ambient vibration measurement data. The feasibility of the study is verified using a numerical model for the containment. From the modal analysis, dynamic parameters of the containment with acceptable correlation to analytical modes can be estimated.

Effects of Hihh Amplitude Prestraining Vibrations on Shear Modulus of Sands (고 변형률 반복 진동이 모래의 전단 탄성계수에 미치는 영향)

  • ;Stokoe, K.H.Il
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • Recently, testing equipment which can run resonant column test altogether with the torsional shear test at the very highly controlled condition was developed at the University of Texas at Austin(U.S.A). With this equipment, the effects of high amplitude pre-straining vibrations on the dynamic properties of clean sands were studied. Tests showed the following results. Low amplitude shear modulus was gradually increased with little void ratio change as the number of high amplitude vibration cycles increased. Variation of volumetric strain with confining pressure for the pre -strained specimen under vibration was smaller than that of fresh specimen. Also the slope of the diagram for shear modulus and confining pressure relationship of the prestrained specimen was smaller than that of fresh specimens. These results agreed well with the analytical results.

  • PDF