• Title/Summary/Keyword: Resonance of vertical pump

Search Result 10, Processing Time 0.026 seconds

Resonance avoidance and Safety Evaluation of Vertical Pump (입형펌프의 공진회피와 안전성 평가)

  • Jeong, Wooyoung;Song, Jindae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.698-702
    • /
    • 2013
  • This paper considers the vertical pumps resonance and soundness. Normally large vertical pump's rotating speed is low, so the low natural mode can make a resonance on the motor and motor stand assembly. The pump resonance makes a very high vibration and trouble on the pump systems. Thus to avoid pump resonance when the pump is on the resonance region, we give the added mass method and evaluate the structure soundness by computer simulation and test on the site. Furthermore we evaluate the modal sensitivity and expect running conditions by the using ISO10814.

  • PDF

Reed Resonance Problems of Large Vertical Pumps (대형 수직펌프의 리드공진 문제)

  • 최원호;양보석
    • Journal of KSNVE
    • /
    • v.4 no.4
    • /
    • pp.425-433
    • /
    • 1994
  • A detailed investigation of a reed resonance for a vertical pump design has been conducted. The structural features of this class of pump lead to typical dynamic characteristics. Of particular importance is the fact that the pump assembly is suspended on a high column above the floor with a heavy motor on the top. Considerable amount of mass forces is involved and the vibration can cause damage to the pumps or to the foundation. It is shown that the reed resonance of the pump-motor system plays important role for design and troubleshooting purposes.

  • PDF

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Vibration Reduction By Dynamic Absorber of Vertical Pump System (동흡진기를 통한 수직펌프의 진동 저감)

  • 배춘희;조철환;양경현;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.628-632
    • /
    • 2001
  • In this paper, Firstly, it is shown that the bending mode vibration source of vertical pump system is comparatively large because resonance. Secondly in order to the bending mode vibration of vertical pump some practical dynamic absorber have been developed and its effectiveness is investigated as installing it at the vertical pump system practically.

  • PDF

대형수직펌프에서의 경계조건 변화에 따른 진동 특성

  • Bae, Chun-Hui;Jo, Cheol-Hwan;Yang, Gyeong-Hyeon;Park, Yeong-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.779-781
    • /
    • 2005
  • In this paper, Firstly, it is shown that the bending mode vibration source of vertical pump system is comparatively large because resonance. Secondly in order to reduce the bending mode vibration of vertical pump, The improvement of some boundary condition have been developed and its effectiveness is investigated as appling it at the vertical pump system pratically.

  • PDF

Vibration Reduction of Vertical Pumps in Industrial Plants Using Double TMDs (DTMD를 이용한 플랜트 수직 펌프의 진동저감)

  • Moon, Yeongjong;Choi, Hyunhoon;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.51-58
    • /
    • 2017
  • The characteristics and effectiveness of double tuned mass dampers (DTMD) have been studied by many researchers. DTMD usually consists of one larger mass block and one smaller mass block. In this study, DTMD was proposed to reduce the vibration of vertical pumps in industrial plants. In order to assess the efficiency of the proposed method, numerical analysis for the simplified vertical pump model with single and double TMDs was carried out. It was also investigated that the effects of optimal TMD parameters such as frequency ratio and damping ratio on dynamic responses of the main structure. According to analysis results, DTMD are more effective to control the vibration of the vertical pump and show good robustness to the change in the stiffness of TMD.

Design of Stiffeners for Reducing Resonant Vibration of Large Vertical Pumps and Its Performance Verification (대형 입형펌프 운전 중 공진현상의 진동 저감을 위한 스티프너 설계 및 성능 검증)

  • Ryu, Kil-Su;Bong, Suk-Keun;Han, Seung-Woo;Roh, Cheol-Woo;Lee, Dong-Min;Lee, Jung-Woo;Park, Junhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This case study presents a practical method to reduce resonant vibration of large vertical pumps. The pumps are driven at 400 rpm rated speed by induction motor. The vibration was not significantly large when operated at this rated speed. Large vibration was occurred when the pump was operated below the rated speed for flow control. Due to the large vibration resonance, variable speed operation of the pump was not possible for several months at worst cases. To find an efficient vibration control method, the flexural responses of pumps for both normal and transient operations were measured. The measured modal characteristics were compared with those of finite element analysis. When the pump was operated at a specific rpm, the natural mode whose resonance frequency is twice the rotating angular speed induced the large vibration. The retrofit utilizing stiffeners to reduce this resonant vibration were performed. Effects of designed stiffeners on reducing vibration were validated through tests after actual installation.

A Study on Dynamic Analysis of Vertical Mixed-Flow Pump for Nuclear Power Plants (원자력 발전소용 입형 사류펌프의 동적해석에 관한 연구)

  • Seo, Y.S.;Lim, W.S.;Chung, H.T.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.71-77
    • /
    • 2006
  • This study introduces the seismic qualification of safety related equipments for nuclear power plants to verify the possibility of resonance in regard to the operating speed and the structural integrity due to external piping nozzle loads as well as seismic dynamic loads using El-Centro earthquake, which was occurred in the 1940's previously. As a first step, it is necessary to investigate the natural frequency of the vertical mixed flow pump in order to determine whether static or dynamic equipment comparing with seismic cut-off frequency, 33hz. Also the normal mode analysis was carried out with the introduction of seismic redesign straint at the middle of vertical pump to increase the natural frequency. In terms of structural integrity, the application of static analysis with normal, upset and faulted nozzle loads event was presented for the comparison of material allowable stress. Also the dynamic analysis was performed to show the design adequacy through the application to the case of El-Centro earthquake.

  • PDF

Design of stiffeners for reducing resonant vibration of large vertical pumps and its verification (대형 입형펌프 운전 중 공진현상의 진동 저감을 위한 스티프너의 설계 및 성능 검증)

  • Ryu, Kil-su;Bong, Suk-keun;Han, Seung-woo;Roh, Cheol-woo;Lee, Dong-min;Lee, Jung-woo;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.458-463
    • /
    • 2012
  • This case study refers to resonance with vertical pumps. Vibration problem occurring after the inverter was installed for speed control. Its problem was appeared any revolution under rated speed. Vibration data was acquired during normal operation and transient state. We examined FRF on its resonance in field and also analyzed a result by finite element method. There was carried out the retrofit in field which was based on these results for solving problem.

  • PDF

A Case Study on Vibration of Vertical Pumps according to Changing Water Level (수위변화에 따른 수직형 펌프의 진동 발생 사례 고찰)

  • Song, Ae-Hee;Song, Jin-Dae;Kim, Hyeon-Sig;Jung, Gi-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.274-278
    • /
    • 2012
  • Vertical pumps are structurally weak in terms of vibration because of installed heavy motor on top of the pumps in form of cantilever. So high vibration on top of the pumps can occur with low vibration in the bottom. These vibration problems experienced very frequently. Majority of studies have been related to the unbalance of rotating parts or structural resonance. In this paper, we introduce an unusual case, vibration variation caused by VPF(Vane Passing Frequency) according to water level.

  • PDF