• Title/Summary/Keyword: Resonance Mode

Search Result 807, Processing Time 0.026 seconds

Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.;Etemadi, S.
    • Wind and Structures
    • /
    • v.25 no.2
    • /
    • pp.131-156
    • /
    • 2017
  • This paper deals with the dynamic stability of embedded functionally graded (FG)-carbon nanotubes (CNTs)-reinforced micro cylindrical shells. The structure is subjected to harmonic non-uniform temperature distribution and 2D magnetic field. The CNT reinforcement is either uniformly distributed or FG along the thickness direction where the effective properties of nano-composite structure are estimated through Mixture low. The viscoelastic properties of structure are captured based on the Kelvin-Voigt theory. The surrounding viscoelastic medium is considered nonhomogeneous with the spring, orthotropic shear and damper constants. The material properties of cylindrical shell and the viscoelastic medium constants are assumed temperature-dependent. The first order shear deformation theory (FSDT) or Mindlin theory in conjunction with Hamilton's principle is utilized for deriving the motion equations where the size effects are considered based on Eringen's nonlocal theory. Based on differential quadrature (DQ) and Bolotin methods, the dynamic instability region (DIR) of structure is obtained for different boundary conditions. The effects of different parameters such as volume percent and distribution type of CNTs, mode number, viscoelastic medium type, temperature, boundary conditions, magnetic field, nonlocal parameter and structural damping constant are shown on the DIR of system. Numerical results indicate that the FGX distribution of CNTs is better than other considered cases. In addition, considering structural damping of system reduces the resonance frequency.

1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode

  • Jung, Jee-Youn;Kim, Il-Yong;Kim, Yo-Na;Kim, Jin-Sup;Shin, Jae-Hoon;Jang, Zi-Hey;Lee, Ho-Sub;Hwang, Geum-Sook;Seong, Je-Kyung
    • BMB Reports
    • /
    • v.45 no.7
    • /
    • pp.419-424
    • /
    • 2012
  • High-fat diets (HFD) and high-carbohydrate diets (HCD)-induced obesity through different pathways, but the metabolic differences between these diets are not fully understood. Therefore, we applied proton nuclear magnetic resonance ($^1H$ NMR)-based metabolomics to compare the metabolic patterns between C57BL/6 mice fed HCD and those fed HFD. Principal component analysis derived from $^1H$ NMR spectra of urine showed a clear separation between the HCD and HFD groups. Based on the changes in urinary metabolites, the slow rate of weight gain in mice fed the HCD related to activation of the tricarboxylic acid cycle (resulting in increased levels of citrate and succinate in HCD mice), while the HFD affected nicotinamide metabolism (increased levels of 1-methylnicotineamide, nicotinamide-N-oxide in HFD mice), which leads to systemic oxidative stress. In addition, perturbation of gut microflora metabolism was also related to different metabolic patterns of those two diets. These findings demonstrate that $^1H$ NMR-based metabolomics can identify diet-dependent perturbations in biological pathways.

An Experimental Study of Radiated So from Elastic Thin Plate in a Turbulent Boundary Layer (난류 유동장 내에 놓인 탄성을 갖는 박판의 방사소음에 대한 실험적 연구)

  • Lee, Seung-Bae;Gwon, O-Seop;Lee, Chang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1327-1336
    • /
    • 2001
  • The structural modes driven by the low wave-number components of smooth elastic wall pressure provide a relatively weak coupling between the flow and the wall motion. If the elastic thin plate has any resonant mode whose wave-number of resonance coincides with $\omega$/U$\sub$c/, the power will be transmitted to those modes of vibration by the flows. We examine the problem in which the elastic thin plate is subject to pressure fluctuations under turbulent boundary layer. Measurements are presented of the frequency spectra of the near- and far-field pressures and radiated sound contributed by the various wave modes of the thin elastic plate. Dispersion equation for wave motions of elastic plate is used to investigate the effect of bending waves of relatively low wave number on radiated sound. The low wave-number motion of elastic plate is observed to have much less influence on the low-frequency energy of wall pressure fluctuations than that of the rediated sound. High amplitude events of the wall pressure are observed to weakly couple with high-frequency energy of radiated sound for case of low tension applied to the plate. The sound source localization is applied to the measurement of radiated sound by using acoustic mirror system.

New calibration apparatus for a precise barometer (초정밀 기압계 교정을 위한 새로운 압력계 교정장치 개발)

  • 우삼용;이용재;최인묵;김부식;최종운
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.157-161
    • /
    • 2003
  • Nowadays there are increasing demands for more accurate measurement of atmospheric pressure according to the development of environmental industries. One of the most important pressure gauges for satisfying these demands is a quartz resonance barometer. In order to calibrate such an accurate barometer, laser/ultrasonic mercury manometers have been used. However, complexity and cost of mercury manometers made it out of use gradually. As a substitute, a gas-operated pressure balance is used for calibration of precise barometers. In such a case, commercially available pressure balances cannot be entirely suitable because consequent exposure of the piston, cylinder and masses to the atmosphere causes the problem of contamination. In this paper a device for changing the masses in situ without breaking the vacuum is described. This device made it possible to add or remove weights in the absolute mode, thereby greatly reducing the time between observations. At the same time, we investigated the characteristics of a commercial precise barometer using this new apparatus.

Experimental Analysis of Axial Vibration in Slim-type Optical Disc Drive (슬림형 광 디스크 드라이브의 축방향 진동에 대한 실험적 해석)

  • 박대경;전규찬;이성진;장동섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.694-699
    • /
    • 2002
  • As the demand for slim laptops requires ion'-height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an anti-vibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the anti-vibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method far anti-vibration mechanism with respect to the existing servo gain plot. This method verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better anti-vibration characteristics.

  • PDF

Isolation and Purification of Antibacterial Components in Cortex Phellodendri (황백나무로부터 항균성분의 분리 및 정제)

  • Kim, Jung-Bae;Shin, Woon-Seob;Kwon, Young-In;Bang, Byung-Ho
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.547-552
    • /
    • 2013
  • Cortex Phellodendri (CP) is derived from the dried bark of Phellodendron amurense. It has been widely used as a drug in traditional Korea medicine for treating diarrhea, jaundice, swelling pains in the knees and feet, urinary tract infections and infections of the body surface. In this study, preparative centrifugal partition chromatography (CPC) was successfully carried out to separate antibacterial compounds from a CP methanol extract. The optimum two-phase CPC solvent system was composed of n-butanol: acetic acid: water (4:1:5 v/v/v). The flow rate of the mobile phase was 3 $m{\ell}/min$ in ascending mode with rotation at 1,000 rpm. The CPC-separated fraction and purification procedures were carried out by preparatory HPLC. Palmatine weas identified by $^1H$, $^{13}C$-nuclear magnetic resonance and electrospray ionization-mass spectroscopy spectral data analysis.

Vibration Characteristics of Corrugated Fiberboard Boxes for Packages of Pears (배 골판지 포장상자의 진동특성)

  • 김만수;정현모
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 2002
  • During handling unitized products, they are subjected to a variety of environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization of pallets has been resulted in a reduction of the shock hazards. This has caused an increasing interest in research focused on vibration caused dam age. Damage to the product by the vibration most often occurs when a product or a product component has a natural frequency that falls within the range of the forcing frequencies of the particular mode of transportation being used. Transportation vibration is also a major cause of fruit and vegetable quality loss due to mechanical damage. This study was conducted to determine the vibration characteristics of the corrugated fiberboard bones for packages of pears, and to investigate the degree of vibration injury of the pears in the boxes during the simulated transportation environment. The vibration tests were performed on an electrohydraulic vibration exciter. The input acceleration to exciter was fixed at 0.25 G for a single container resonance test and 0.5 G for the vertical stacked container over the frequency range from 3 to 100 Hz. Function generator (HP-33120A) was connected by wire to the vibration exciter for controlling the input acceleration at a continuous logarithmic sweep rate of 1.0 octave per min. The peak frequency and acceleration on the single box test were 22.02 Hz, 1.5425 G respectively, and these values on the vertical stacked boxes were observed from the bottom box 19.02, 18.14, 16.62 and 15.40 Hz and 2.2987, 3.7654. 5.6087, and 7.9582 G, respectively. The pear in the bottom box had a slightly higher damage level than the fruit packed in the other stacked boxes. It is desirable that the package and transportation system has to be so designed that 15∼20 Hz frequency will not occur during the transportation environment.

Investigation of an Arc-induced Long Period Fiber Grating Inscribed in a Photonic Crystal Fiber with Two Large Air Holes

  • Kim, Sun-Duck;Kim, Gil-Hwan;Hwang, Kyu-Jin;Lim, Sun-Do;Lee, Kwan-Il;Kim, Sang-Hyuck;Lee, Sang-Bae
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.428-433
    • /
    • 2009
  • A photonic crystal fiber with two large air holes outside the holey cladding region is fabricated to induce an effective long periodic grating (LPG) in the core by an electric arc discharge. We believe that the two large air holes lead to the asymmetric perturbation in the core under the electric arc discharge, thereby introducing the coupling to the first higher-order mode. The transmission characteristics of the PCF with the LPG for the external perturbation such as strain, curvature, and temperature are also investigated. It was found that the shift of resonance peak in the transmission spectrum depends on the bending direction. The curvature of 8.55 $m^{-1}$ results in the center wavelength shifts of 1.8, 4.3, and 11 nm for a vertical, diagonal, and horizontal direction of the curvature to the large air-hole alignment, respectively.

Photonic Crystal Based Bandpass Filter Design for WDM Communication Systems (WDM 시스템에 적합한 광결정 대역 통과 필터 설계)

  • Park, Dong-Soo;Kim, Sang-In;Park, Ik-Mo;Lim, Han-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.266-274
    • /
    • 2005
  • We have designed photonic crystal based bandpass filters whose characteristics are suitable for WDM communication system. The filters consist of coupled point defect resonators in two-dimensional photonic crystal. The frequency response of coupled resonators has been analyzed by the coupling of modes in time, from which the design parameters for the coupled resonator filters have been extracted. For the appropriate choice of the design parameters, each resonator is treated as a lumped L-C resonance circuit, and from the analogy between the equivalent circuit and the standard L-C filter circuits, the design parameters are simply determined from the table for general filter circuit design. Based on the determined design parameters, a photonic crystal based filter has been designed and its performance has been calculated using the finite-difference time-domain method. The designed filter shows a pass band of 50GHz and 0.5 dB in-band ripple, which is suitable for typical WDM communication systems with 100GHz channel spacing.

Wide Tuning and Modulation Characteristics Analysis of Coupled-Ring Reflector Laser Diode (결합 링 반사기 레이저 다이오드의 광대역 파장 가변 및 변조 특성 해석)

  • Yoon, Pil-Hwan;Kim, Su-Hyun;Chung, Young-Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.544-547
    • /
    • 2006
  • A time-domain modeling approach is used to study characteristics of a widely tunable coupled-ring reflector (CRR) laser diode(LD). The CRR consists of a bus waveguide and two coupled ring resonators coupled to the bus without resorting to distributed Bragg grating structure. The tuning range can be a few tens of nanometers with a side mode suppression ratio exceeding 35dB through the adjustment of currents into the phase control sections in the rings. The CRR laser diode has long effective cavity length compared to conventional laser diodes. Accordingly, a broad additional resonance peak in the amplitude modulation characteristics is observed between 20 to 30 GHz, implying the extension of amplitude modulation bandwidth.