DOI QR코드

DOI QR Code

Photonic Crystal Based Bandpass Filter Design for WDM Communication Systems

WDM 시스템에 적합한 광결정 대역 통과 필터 설계

  • Park, Dong-Soo (School of Electrical Engineering, Ajou University) ;
  • Kim, Sang-In (School of Electrical Engineering, Ajou University) ;
  • Park, Ik-Mo (School of Electrical Engineering, Ajou University) ;
  • Lim, Han-Jo (School of Electrical Engineering, Ajou University)
  • Published : 2005.06.01

Abstract

We have designed photonic crystal based bandpass filters whose characteristics are suitable for WDM communication system. The filters consist of coupled point defect resonators in two-dimensional photonic crystal. The frequency response of coupled resonators has been analyzed by the coupling of modes in time, from which the design parameters for the coupled resonator filters have been extracted. For the appropriate choice of the design parameters, each resonator is treated as a lumped L-C resonance circuit, and from the analogy between the equivalent circuit and the standard L-C filter circuits, the design parameters are simply determined from the table for general filter circuit design. Based on the determined design parameters, a photonic crystal based filter has been designed and its performance has been calculated using the finite-difference time-domain method. The designed filter shows a pass band of 50GHz and 0.5 dB in-band ripple, which is suitable for typical WDM communication systems with 100GHz channel spacing.

본 논문에서는 2차원 광결정 공진기의 결합을 통해 WDM시스템에 적합한 특성을 가지는 공진 필터를 설계하였다. 공진기간의 결합에 있어서 고려해야 할 요소를 시영역에서의 모드 결합이론(coupling modes in time)을 적용하여 이론적으로 분석하였으며, 전자회로 등가화를 이용하여 쉽게 그 요소를 결정할 수 있음을 보였다. 공진기 결합에 있어서 공진기 간의 간격에 따른 위상천이에 대해서 외부감쇄에 의한 Q-factor를 조정함으로써 보상할 수 있음을 확인하였고, 2차원 광결정 점결함 공진기를 이용하여 500GHz의 대역폭을 가지며 통과대역에서 0.5 dB 리플을 가지는 3차 Chebyshev 대역 통과 필터를 설계하였다.

Keywords

References

  1. S. Fan, P. R Viulleneuve, J. D. Joannopoulos, and H. A. Hans, 'Channel drop filters in photonic crystals', Optics Express, Vol. 3, p. 4, 1998 https://doi.org/10.1364/OE.3.000004
  2. M. Imada, S. Noda, A. Chutinan, M. Mochizuki, T. Tanaka, 'Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide', Journal of Lightwave Technology, vol. 20, no. 5, pp. 873-878, 2002 https://doi.org/10.1109/JLT.2002.1007943
  3. C.J.M. Smith, R.M. De La Rie, H.Benisty, 'In-plane microcavity resonators with two-dimensional photonic bandgap mirrors,' Proc. Inst. Elect. Eng.-Optoelectron., vol. 145, no .6, pp. 373-378, 1998 https://doi.org/10.1049/ip-opt:19982465
  4. M. Rattier, H. Benisty, C,J.M. Smith, A. Beraud, 'Performance of waveguide-based two-dimensional photonic-crystal mirrors studied with Fabry-Perot resonators,' IEEE J. Quantum Electron., vol. 37, pp. 237-243, Feb. 2001 https://doi.org/10.1109/3.903074
  5. Raffaella Costa, Andrea melloni 'Bandpass resonant filters in photonic-crystal waveguides' IEEE photonics technology letters, vol.15, no. 3, pp. 401-403, 2003 https://doi.org/10.1109/LPT.2002.807953
  6. A. Melloni, and M. Martinelli, 'Synthesis of direct-coupled -resonators bandpass filters for WDM system', Journal of Lightwave Technology, vol. 20, no. 2, pp. 296-303, 2002 https://doi.org/10.1109/50.983244
  7. A. Melloni, M. Floridi, F. Mrichetti, and M. Mrtinelli, 'Equivalent circuit of a Bragg grating and its applications to Fabry-Petor cavities', Journal of the Optical Society of America. A, Optics, image science, and vision, v. 20 no. 2, pp. 273-281, 2003 https://doi.org/10.1364/JOSAA.20.000273
  8. S. Lan, S. Nishikawa, Y. Sugimoto, 'Analysis of defect coupling in one and two dimensional photonic crystas,' Phys. Rev. B, vol. 65, pp. 165 208-1-165208-9, 2002
  9. A. L. Reynolds, U. Peschel, F, Lederer, P.J. Roberts, T. F. Krauss, and P. J.I. De Maagt, 'Coupled defect in photonic crystals,' IEEE Trans. Microwave Theory Techn., vol. 49, pp. 1860-1867, 2001 https://doi.org/10.1109/22.954799
  10. Hermann A. Haus, Wave and Fields in Optoelectronics. Englewood Cliffs, NJ : Prentice-Hall, 1984
  11. Hermann A. Haus, IEEE, and Y. Lai, 'Theory of cascaded Quarter wave shifted distributed feedback resonators' IEEE J. Quantum Electron., vol.28, no. I , pp . 205-212, 1992 https://doi.org/10.1109/3.119515
  12. David M. Pozar, Microwave Engineering. John Wiley & Sons, Inc, 1998