• Title/Summary/Keyword: Resonance Mode

Search Result 807, Processing Time 0.027 seconds

Heaving displacement amplification characteristics of a power buoy in shoaling water with insufficient draft

  • Kweon, Hyuck-Min;Cho, Il-Hyoung;Cho, Hong-Yeon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.614-624
    • /
    • 2013
  • The resonance power buoy is a convincing tool that can increase the extraction efficiency of wave energy. The buoy needs a corresponding draft, to move in resonance with waves within the peak frequency band where wave energy is concentrated. However, it must still be clarified if the buoy acts as an effective displacement amplifier, when there is insufficient water depth. In this study, the vertical displacement of a circular cylinder-type buoy was calculated, with the spectrum data observed in a real shallow sea as the external wave force, and with the corresponding draft, according to the mode frequency of normal waves. Such numerical investigation result, without considering Power Take-Off (PTO) damping, confirmed that the area of the heave responses spectrum can be amplified by up to about tenfold, compared with the wave energy spectrum, if the draft corresponds to the peak frequency, even with insufficient water depth. Moreover, the amplification factor of the buoy varied, according to the seasonal changes in the wave spectra.

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

Effects of Torque Fluctuation on the Stability of the Transverse Vibration of a Spinning Disk (영구자석 스핀들 모터의 코깅토크가 회전디스크 굽힘 진동의 안정성에 미치는 영향)

  • 이기녕;신응수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.942-947
    • /
    • 2001
  • This paper provides a stability analysis of the transverse vibration of a spinning disk under the torque fluctuation from a permanent magnetic motor. An analytical model has been formulated for a flexible annular disk with its spinning velocity varying harmonically with the same frequency as the cogging torque. A perturbation method based on multiple time scales is applied to perform the stability analysis. Based on expressions for the amplitude and frequency of the parametric excitation, stability boundaries are determined in terms of a nominal spindle velocity, the least common multiple of poles and slots, the magnitude of torque fluctuation and the modal characteristics of. the disk. The stability diagrams predicted by perturbation have been verified numerically using the Floquet theory, which is in good agreement. In conclusion, the fluctuation in spinning velocity is found to affect the stability of the transverse vibration of a rotating disks. The results of this work can be applied to high precision spindle systems such as computer storage systems.

  • PDF

A Study on Characteristics of Step-down Piezoelectric Transformer Using Transvers and Thickness Vibration mode (경방향과 두께방향 진동모드를 이용한 강압용 압전변압기의 특성에 관한 연구)

  • Chong, Hyon-Ho;Park, Tae-Gone;Kim, Myung-Ho;Kwon, O-Yong;Lee, Jin-I;Lee, Won-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1511-1514
    • /
    • 2002
  • This paper presents design and construct of flat type step-down piezoelectric transformer for the application to AC adaptor. This piezoelectric transformer operated in resonance vibration mode. In this paper, finite element method(FEM) was used for analysing piezoelectric transformers. Stress and electric field of the transformer were simulated at resonance frequency. Using this simulation results, we manufactured improved Rosen type piezoelecric transfomer and measured its output characteristics. As results, output power was linearly increased by increasing input power at resonance frequency and it was found that the transformer an invariable output power for input power. From these results, we expect that this piezoelecric transfomer can be applied to small size and low capacitive AC adaptor.

  • PDF

Nondestructive Bending Strength Evaluation of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Nondestructive evaluation (NDE) method by using a resonance frequency mode was carried out for ceramics made from particle boards with different phenol resin impregnation ratios (30, 40, 50, 60%) at carbonizing temperature of $800^{\circ}C$. The material for ceramics was Miscanthus sinensis var. purpurascens board. Dynamic modulus of elasticity increased with increasing impregnation ratio. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made from Miscanthus sinensis var. purpurascens particle boards by different phenol resin impregnation ratios.

Structural design of a piezoelectric flextentional deep-water sonar transducer using a coupled FE-BEM (결합형 유한요소-경계요소 기법을 사용한 심해저용 압전형 유연성 쏘나 트랜스듀서의 구조 설계)

  • Jarng, Soon-Suck;Chung, Woon-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.377-387
    • /
    • 1999
  • A piezoelectric flextentional deep-water sonar transducer has been designed using a coupled FE-HEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state frequency response for TX displacement modes, directivity patterns, resonance frequencies, TVRs. While the conventional barrel-stave typed sonar transducer of the piezoelectric material is designed, the external surface of the transducer is modified in order to allow the same hydrostatic pressure to be applied onto the inner and the outer surfaces of the transducer. With this modification for deep-water application, a new resonance mode is generated at lower frequency. This lower resonance mode can be adjusted according to the degree of the outer surface modification.

  • PDF

Study on Analysis of Vibration Characteristics and Modal Test for a Quad-Rotor Drone (쿼드로터형 드론의 진동특성 분석 및 실험에 관한 연구)

  • Kim, Minsong;Kim, Jaenam;Byun, Youngseop;Kim, Jeong;Kang, Beomsoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.707-714
    • /
    • 2016
  • This paper describes analysis results of vibration characteristics and modal test for a small-scale quad-rotor drone. The rotor arm has a slender body with a propeller and motor at its tip. Rotor system generates excitation for an unbalanced mass. Therefore, the drone platform is involved in the possibility of resonance. For advance identification of the possibility of resonance, confirmation of eigen-mode being closest to the propeller operation range is necessary. Material properties of CFRP tubes used for the rotor arm were acquired by finding the natural frequency based on Rayleigh method. A simplified quad-rotor FE model consisting of rotor arm assembly with tip mass was built to perform numerical analysis, and a free-free boundary condition was applied to provide flight status. Modal tests for the actual platform with impact hammer instrument were performed to verify analysis results. Separation margin from hazardous eigen-mode was checked on the propeller operation range.

Nonlinear response of a resonant viscoelastic microbeam under an electrical actuation

  • Zamanian, M.;Khadem, S.E.;Mahmoodi, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.4
    • /
    • pp.387-407
    • /
    • 2010
  • In this paper, using perturbation and Galerkin method, the response of a resonant viscoelastic microbeam to an electric actuation is obtained. The microbeam is under axial load and electrical load. It is assumed that midplane is stretched, when the beam is deflected. The equation of motion is derived using the Newton's second law. The viscoelastic model is taken to be the Kelvin-Voigt model. In the first section, the static deflection is obtained using the Galerkin method. Exact linear symmetric mode shape of a straight beam and its deflection function under constant transverse load are used as admissible functions. So, an analytical expression that describes the static deflection at all points is obtained. Comparing the result with previous research show that using deflection function as admissible function decreases the computation errors and previous calculations volume. In the second section, the response of a microbeam resonator system under primary and secondary resonance excitation has been obtained by analytical multiple scale perturbation method combined with the Galerkin method. It is shown, that a small amount of viscoelastic damping has an important effect and causes to decrease the maximum amplitude of response, and to shift the resonance frequency. Also, it shown, that an increase of the DC voltage, ratio of the air gap to the microbeam thickness, tensile axial load, would increase the effect of viscoelastic damping, and an increase of the compressive axial load would decrease the effect of viscoelastic damping.

Resonance Scattering Characteristics of Multi-layered Dielectric Gratings under Conical Incidence (원추형 입사에서 다층 유전체 격자구조의 공진 산란특성)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.123-128
    • /
    • 2022
  • Applying rigorous modal transmission-line theory (MTLT), the properties of resonant diffraction gratings under conical light incidence is investigated. The mode vectors pertinent to resonant diffraction under conical mounting vary less with incident angle than those associated with diffraction gratings in classical mounting. Furthermore, as the evanescent diffracted waves drive the leaky modes responsible for the resonance effects, the conical mounting imbues diffraction gratings with larger angular tolerance than their classical counterparts. Based on these concepts, the angular-spectral and wavelength-spectral performance of resonant diffraction gratings in conical and classical mounts by numerical calculations with spectra found for conical incidence are quantified. These results will be useful in various applications demanding resonant diffraction gratings that are efficient and physically sparse.

A Study on Whispering Gallery Mode Dielectric Coupled Resonator which Englarges the Free Spectral Tange (공진주파수 간격을 확장시키는 Whispering Gallery 모드 유전체 복합공진기에 관한 연구)

  • 황재효;민경일;구경완
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1225-1232
    • /
    • 2000
  • In this paper, a new coupled resonator which expands free spectral ranges (FSR) of the W. G. mode resonators is presented. The proposed coupled resonator consists of two dielectric disks. The resonance frequency of the coupled resonator is equivalent to the frequency, which satisfies the individual resonance conditions of each disk at the same time. As the results, the FSR is expanded. The coupled resonator proposed in this paper at K-Band is fabricated by using dielectric disks and the dielectric straight waveguides. The validity of proposed coupled resonator was verified through experiments.

  • PDF