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Structural design of a piezoelectric flextentional deep-water

sonar transducer using a coupled FE-BEM

Soon Suck Jarng and Woon Kwan Chung®
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Abstract

A piezoelectric flextentional deep-water sonar transducer has been designed using a coupled
FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with
external electrical excitation conditions. Different results are available such as steady-state frequency
response for TX displacement modes, directivity patterns, resonance frequencies, TVRs. While the
conventional barrel-stave typed sonar transducer of the piezoelectric material is designed, the external
surface of the transducer is modified in order to allow the same hydrostatic pressure to be applied onto
the inner and the outer surfaces of the transducer. With this modification for deep-water application, a
new resonance mode is generated at lower frequency. This lower resonance mode can be adjusted
according to the degree of the outer surface modification.

1. Introduction
Ocean acoustic tomography requires wide
bandwidth, compact, and effectively low frequency

sources of sound”. This paper describes the
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modelling process for such a sonar transducer
using a coupled finite element-boundary element
method (FE-BEM).
transducers are widely used as a high-power

Flextentional sonar
projector. It is a compact sound source efficiently
over quite a broad frequency rangem. The precise
dimensions of a flextentional sonar transducer
could be optimally predicted by the analysis of
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244,
the flextentional transducer dynamics. The choice
of the active element depends on structural types
and electromechanical efficiency of the transducer.
A flextenttonal transducer such as a barrel-stave
type has been modelled in three dimensions. The
main aim of this paper is to design the optimal
structure of the flooded piezoelectric flextentional
coupled FE-BEM.
analyses

transducer using a
Different

displacement modes, directivity patterns, resonance

sonar

results for are produced;
frequencies, and transmitting voltage responses. A
new design skim is suggested in section 25
where the outer surface structure of the other
previous barrel-stave type sonar transducer is
modified
pressure.
For (between 275 kHz)

high-power applications flextentional transducers

in order to compensate deep-water

low-frequency and
are generally used (Figure 1). Here a stack of
ceramic ring, as it expands and contracts as a
result of the applied alternating voltage, exerts an
oscillatory force on a pair of thick metal "barrel
" B A bolt holds the staves together and
pre-stresses the ceramic stack so that even under

staves

high drive the ceramic and any bonds between
components remain in compression. With this
construction the relatively small linear motion of
the ceramic stack is converted into a much larger
so that

change in the volume of the staves,

moderate power levels are possible.

Figure 1. Flextentional sonar transducer
prototype for frequency between
275 kHz

A& 25
2. Numerical Method
2.1 Finite Element Method (FEM)
The following equation (1) is the integral

formulation of the piezoelectric equations:
{R+{F} = [K.}{a + [K. &
-’ IMl{a + jelRI{a) (1)

—{Q = [Kulld + [Kulld)

where

{F} Applied Mechanical Force

{F;}  Fluid Interaction Force

{Q} Applied Electrical Charge

{a)} Elastic Displacement

{¢) Electric Potential

w Angular Frequency

[M] Mass Matrix

[R1 Dissipation Matrix

[K,, ] Elastic Stiffness Matrix

[ K4 1 Permittivity Matrix

[ K. 1 Piezoelectric Stiffness Matrix

[K¢u]: [K11¢]'

The isoparametric formulation for 3-dimensional
structural elements is well documented by Allik
H. et. al'" Each 3-dimensional finite element is
composed of 20 quadratic nodes and each node

has nodal displacement ( a,, a,, a,) and electric

potential ( ¢) variables. In local coordinates the
finite element has 6 surface planes (fxy, *yz, £
zx) which may be exposed to external fluid
environment. The exposed surface is used as a
which composed of 8

boundary element is

quadratic nodes.

2.2 Boundary Element Method (BEM)

For sinusoidal steady-state problems, the

Helmholtz equation, v*¥ + B ¥ = (, represents

the fluid mechanics. ¥ is the acoustic pressure
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e™ and k(= w/c) is the

wave number. In order to solve the Helmholtz

with time variation,

equation in an infinite fluid media, a solution to
the equation must not only satisfy structural

surface boundary condition (BC),
% = p;0® a, but also the radiation

iy e O | ot e
condition at infinity, IIJHL gﬁs( e +#%&®)dS = 0.
-a% represents differentiation along the outward

normal to the boundary. p; and a, are the fluid

density and the normal displacement on the
The Helmholtz

equations derived from Green’s second theorem

structural  surface. integral

provides such a solution for radiating pressure

waves;

§ 022D — Gy 0 2B ) s,

= B(») W) — ¥iulp)

2)

where Gip, @) = =lp—adl

47rr
p is any point in either the interior or the
exterior and g is the surface point of integration.

B(p) is the exterior solid angle at p.

The acoustic pressure for the i global node,

P(p,), is expressed in discrete form™:
(1 <7< ng)
ﬁ(p') w(p')_ wmc(px)

- (w0 22D 5, -2H2 s,

(3a)
aG(p;, @) W q)
D~ 5p ~ G(pi, a) on, )ds

[ w0

q4ESn
(3b)
Snow, 2800
= a"qf ds, (3c)
- . ( ) —=Td
TP NIOR L

»gxf.

A4 1Y F4
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z g(fs,Nf( ?) G; 2:.0) dS,,) v,

=1
- o0t 53 fSHN,(q)c(p,-, Dn,dS)an;
(30

= mﬁsl 2 AWy ¥, i— oy & 'g] g}Bim,,a m; (3€)
where nt is the total number of surface elements
and a,; are three dimensional displacements.
Equation (3b) is derived from equation (3a) by
discretizing integral surface. And equation (3c) is
derived from equation (3b) since an acoustic
pressure on an integral surface is interpolated
from adjacent 8 quadratic nodal acoustic pressures
corresponding the integral surface. Then equation
(3d) is derived from equation (3c) by swapping
integral notations with summing notations. Finally
the parentheses of equation (3d) is expressed by

upper capital notations for simplicity.

When equation (3e) is globally assembled, the

discrete Helmholtz equation can be represented as

([A1-AM{T} = +p; & [Bla)—{¥,) @)

where [A] and [B] are square matrices of (ng by

ng) size. ng is the total number of surface nodes.

Where the impedance matrices of equation (4),
[A] and [B],

singularity arise®. One is

are computed, two types of
that the
G i, ),
infinite as q approaches to pi. This problem is
local
coordinates into triangular local coordinates and
The other is
that at certain wave number the matrices become
These

eigenvalues

Green's
function of the equation, becomes

solved by mapping such rectangular

again into polar local coordinates'”.
‘number  are

of the

Dirichlet problemm. One approach to overcome the

ill-conditioned. wave

corresponding  to interior
matrix singularity is that [A] and [B] of equation

(4) are modified to provide a unique solution for
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rangemﬂ. The modified
equation the modified
Helmholtz (HGP"™ s
obtained by adding a multiple of an extra integral

the entire frequency
matrix referred to as
gradient formulation
equation to equation (4).

([A]-BDNDal CD{ ¥}

Y awiﬂc
= +p; o*([BIDal D) {a }—(W,-M@am‘;)

(5)

where
-1 I
477 k. (Number of surface ele\ments adjacent a surface node)
[C) and [D] are rectangular matrices of (nt by
ng) size. nt is the total number of surface
elements. @ symbol indicates that the rows of
[C],ID] corresponding to surface elements adjacent
a surface node are added to the row of [A][B]

corresponding to the surface node, that is,

$ Sain=E Eaint E LR aconm
gl ng(z',j)= gl ng(i’j)+ gl gl( 2;” Dm. i)

(6)
where S(i) is the number of surface element
adjacent a surface node. The derivation of the
[C1[D] are well described by

. Equation (6) may be reduced in its

extra matrices

. (12
Francis"?

formulation using superscript € for convenience;

AW = 40, *B¥a) — ¥, %)
where
([Al-A NPl C) = A%
([BIDd D) = B®
(winc®a_a-agi'£) = w?nc
ny

Equation (7) can be written as
{(T)= +o, %A% B9} - (4% 28, ®
2.3 Coupled FE-BE Method

The acoustic fluid loading on the solid-fluid
interface generates interaction forces. These forces

B4,

3

ol 27

o

can be related to the surface pressures by a

coupling matrix [L}*";
{F}) = — [LHL 7T} (9

where [L] = fN'nNdS. N is a matrix of

surface shape functions and n is an outward
normal vector at the surface element. N' is the
transposed form of N matrixes.

Equations (8) and (9) indicate that the interaction
force can be expressed by functions of elastic
displacement instead of acoustic pressure. This
relationship can be applied to equation (1) when
the sonar transducer model is submerged into the

infinite fluid media:

(A +1L1(A®) 198,
= [K.Na+1o; oALI(A®) B q)
+[K 4K 8 — o’ M){ a} + jol RI{ &}

—{Q = [Kulad+[K 8 (10)
where
A Incident Pressure
[L] Coupling Matrix at the Fluid-Structure
Interface

A® Fluid BEM Matrix [A]
B® Fluid BEM Matrix (B]
o5 Fluid Density
j=vy—-1

Since the present sonar transducer is modelled

as a projector, the internal force vector, {F}, and
the external incident pressure, [L](A®) 1o® |
of equation (10) are removed. The only applied
BC for the equation is the applied electrical
charge vector, {@}. The acoustic pressure in the
far field is determined by B(p)=1 for given values
surface nodal

of surface nodal pressure and

displacement;

gp'(p): "21 gAim.iwm.i
Py o* mgl gBim,ia m./'_(A@) —‘Q‘%f
(11
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2.4 Modelling of a barrel-stave typed piezo-
electric sonar transducer

Instead of using the piezoelectric ceramic itself
in a flexural mode, it is possible to devise
flextentional structures in which the high stress
but low strain generation of the ceramic in the
thickness mode is transformed into larger
displacements by means of some type of level
Figure 3). A stack of

piezoelectric ceramic operating in the thickness

action (Figure 1
mode is connected to a surrounding elliptical shell
When the stack extends,
along the major axis of the ellipse, the shell
thus

producing a large volume displacement overall. In

like a barrel-stave.

moves inwards along the minor axis,
general terms, the resonance frequency of such a
transducer depends principally on the major and
minor axes, wall thickness, and material properties
of the shell, with the stack itself having a lesser
bandwidth

primarily on the

influence'™.  The is also dependent
shell.

leads to the maximum

parameters of the
Maximum eccentricity
bandwidth, but has the lowest power output,
whilst least bandwidth and highest power occurs

U9 The maximum

for the least eccentric shape
pressure which an elliptical shell can withstand is
also dependent on its shape and thickness, and is
therefore related to its resonance frequency. The
size of the flextentional transducer is generally
much less than a wavelength in water at their
therefore  radiates

resonance frequency. It

approximately omni- directionally in the plane
perpendicular to the major axis. A compressive
pre-stress needs to be applied to the stack for
higher power output from a compact size. This is
usually done by applying pressure to the minor
axis of the shell, thus extending the major axis,
and inserting the stack into the extended shell.
On release of the pressure, the relaxation of the

shell applies the necessary force to the stack.

(a)

(b) ()

Figure 2. External view of the flextentional sonar
transducer (a) and their corresponding
finite mesh elements in 3 dimensions
(b) and (c).

The piezoelectric flextentional sonar transducer
has been totally divided into 608 elements with
3280 nodes. The solid-fluid interfacing surface
elements are 320 with 992 nodes. Only one fourth
of the total elements are used for formulation of
the global coefficient matrix because of the
symmetricity of the structure as shown in Figure
3 (b). Figure 4 shows the dimensions of the one
eighth of the barrel-stave transducer in meter
scale. The dimensions of the modelled transducer
are not optimal, however the dimensions could be

changed for any particular optimal purpose.
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Figure 3. Three dimensional view of the flexten-
tional sonar transducer within the fluid
domain (a) and the internal materialistic

composure of the modelled sonar
transducer (b).
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Figure 4. The dimensions of the 1/8 of the flexten-

tional sonar transducer. r=curvature radius.

A
e,

J & 29

Table 1 and Table 2 show property values of

the materials used for the sonar transducer.

Tablel. Piezoelectric Material Properties of PZT4
(Axially Polarized Properties)

rgztr:r Value Unit rﬁ:{; Value Unit
o 7500 | kg/m’ | Co. | 306E+10 | N/m’
C; | L39E+11 | N/m’ |e} ,| -52 |N/Vm
C; | T78E+10 | N/m" |egp,i 52 | N/Vm
C; | 743E+10 | N/m” |e; .| 151  |{N/Vm
C | 13911 | Nm® [@f,| 127 |NWVm
CS | T4E410 | Nim' |eF,] 127 |N/Vm
CZ | 115E+11 | N/m’ |gf | 646E-9 | F/m
C)z| 256E+10 | N/m* |e) | 646E-9 | F/m
CZ | 256E+10 | N/m* (&% | 562E-9 | F/m
Ky | 069 - Ks| 07 -

Table 2 Properties of other materials used for the

flextentional sonar transducer

TOperty | Density 0 M\({')(éltllrl]ugs’SY Poison's
Material [kg/m’) IN/m] Ratio ¥
Air 1.22 1411E5 -
Aluminium 2750 70.0E9 0.34
Steel 7850 207.0E9 029

25 Modelling of a barrel-stave typed sonar
transducer with pressure compensation gaps

So far, the inside of the present flextentional
sonar transducer is only filled with air (or water).
If the air-filled flextentional sonar transducer is
submerged into deep water, the external surface
of the barrel-stave is pushed into the inside by

high hydrostatic pressure. This deep-water
pressure problem causes weakening of the
structural displacements, so that the output

acoustic power becomes low. This problem can be
solved by allowing the sea water to be penetrated
into the inside of the transducer by some slight

modification of the external surface of the

- 382
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barrel-staves typed flextentional transducer as

shown in Figure 5 Very narrow and long
openings are made between staves, so that the
inner and the outer surfaces of the stave have
equal water pressure. Since the piezoelectric
elements are directly exposed to water pressure
loading, the resonance frequency of the modified
flextentional sonar transducer becomes lower than
that of

the non-modified flextentional sonar

transducer because of mass loading effects.

(a)

(b)

The
sonar

barrel-stave typed deep-water
with  hydrostatic
pressure compensation gaps between
staves (a) and its 1/8 internal finite
element meshes.

Figure 5.
transducer

3. Results and Discussions

The coupled FE-BE method has been
programmed with Fortran language running at a
SUN workstation. Calculation is done with double
precision and the program is made for three
dimensional structures. It is a common practice to
have the size of the largest element to be less

than A/3.

Figure 6 shows the transmitting voltage (TV)
responses of the air-filled flextentional submerged
transducer. The acoustic power at 4785 Hz
resonance is about 147 dB (ref 1 #Pa/lV at 1m)
at Z axis direction. And figure 7 shows beam
polar different input

patterns  in form for

frequencies.

Y AR8a-FA8E VIS AR E AL A /AN Y Ed2fAY F2
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Figure 6. Transmitting voltage response

of

air-filled flextentional transducer in dB
(ref 1 xPa at Im)(0° :X-axis, 90" :Z-axis).

{e) 4785[Hz]

Figure 7. Beam patterns for different

frequencies (0" :X-axis, 90° :Z-axis).

(f) 6588[Hz]

input
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Figure 8 shows the transmitting voltage (TV)
responses of the water—filled flextentional
transducer. The acoustic power at 3766 Hz
resonance is about 148 dB (ref 1 xPa/1V at lm)

at 7Z axis direction. And figure 9 shows beam

patterns for different input frequencies. The

water-filled flextentional sonar transducer has a =

lower resonance frequency than the air-filled (e) 4981{Hz] {f) 6588[Hz]

flextentional sonar transducer, but the output

acoustic power seems not to be changed. Figure 9. Beam patterns for different input
frequencies (0" ‘X-axis, 90° :Z-axis).

o Transmitting voltage response

150 Z-axis 5 .
.0 , /' \».\ ol . 1mensmlBi’\g voltage response [ X-aws |
. N \
g '™ T N | 19 180 Gap:1  Gep 0
= R W X >
5 ; » { 140 Gap. 0.5 T e ./\
et X-axi9 s \ N
L 1o . e ™ ™~ // S \ o
by = 3 . b
Tl £ XS
& : = ,
2 90 /,: 3 0 g
o S o) P”
J = i
7or 2 « / ~ Gap 0.001
0 s
a 1000 2000 3000 4000 5000 6000 7000 B0 8o if Gap. 0.01
Frequency [Hz} 70
80

o 7000 2000 3000 4000 5000 6000 7000 6000
Frequoncy (Hz]

Figure 8. Transmitting voltage response of water-
filled flextentional transducer in dB
(ref 1 p#Pa at lm)(0° :X-axis, 90" ‘Z-axis).
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® 1w} i 7.
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BEANN- ) Gep . 0.001
a0
Gap: 0.0
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Figure 10. Transmitting voltage response of
pressure-compensated flextentional
transducer for different gaps in dB
(ref 1 #Pa at 1m)

(0" X-axis (a), 90" Z-axis (b)).

(c) 2003[Hz] (d) 3766[Hz]

Figure 10 shows the transmitting voltage (TV)
responses of the modified pressure-compensated
flextentional transducer. The acoustic power at
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273 kHz resonance is about 135 dB (ref 1 pzPa/1V
at Ilm) at Z axis direction for different opening
gaps. The pressure-compensated flextentional
sonar transducer has a more lower resonance
frequency than the water-filled flextentional sonar
transducer, but the output acoustic power seems
to be lower than the latter one. The sizes of the
opening gaps are noticed in figures.

11 the resonance frequency
variation of the pressure-compensated flextentional
sonar transducer with different opening gaps. For
the present model, the sonar transducer with 0.5°
opening gap produces the lowest resonance
frequency. And figure 12 shows beam patterns

Figure shows

with 0.5° gap for different input frequencies.

Resonace Frequency [H2]

e

0 61 02 03 04 05 06

Gap in degree

07 08 09 1

Figure 11. Variation of resonance frequency of the

pressure—-compensated flextentional

sonar transducer with different gaps in

degree.

~—
E)

(a) 552[Hz]

(b) 1140[Hz]

AYE SFaA-AALA HL ALE AL Ay &

d

A

2y EW2FAY Fz2 A7

(e) 6001[Hz]

(f) 7020[Hz]

Figure 12. Beam npatterns of the pressure-
compensated flextentional
sonar

deep-water
transducer with 05" opening

gap , (0° :X-axis, 90° :Z-axis).

Figure 13 shows the displacement modes of the
one eighth of the pressure-compensated
flextentional transducer at 2521 Hz with 21
different phases. The figures are plotted with
hidden lines in series for 1/20 intervals of one
cycle, so that the change of the structural
displacement can be viewed in different phases.
From the series of figures in different phases, it
is clear to notice that the force generated by the
active element is transferred to the aluminium
stave through the end caps in the similar
mechanism like an arm lever. Therefore the
relatively small linear motion of the ceramic stack
is converted into a much larger change in the
volume of the staves. Figure 14 shows the same
displacement mode as figure 13 at one particular
phase but at Z-axis view point.



Figure 13. Displacement modes of the one eighth
flextentional
with 21

pressure-compensated
transducer at 2521 Hz
different phases.

(a) (b)
Figure 14.

Displacement modes of the

pressure—compensated flextentional
transducer at 2512 [HZ] ( opening gap:
05° ), (a): real value, (b): imaginary

value. (view point of (a),(b): Z~axis).
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4_ Conclusion

The dynamics of the barrel-stave sonar
transducer of the piezoelectric material had been
coupled FE-BEM. The
flextentional displacement mode was temporally
figured to show the mode in different phases. The
flextentional

modified in order to compensate the hydrostatic

simulated using a

conventional sonar transducer 1is

pressure. The pressure-compensated flextentional

sonar transducer produces lower resonance

frequency as well as lower output acoustic power
than  the

transducer. This paper does not include the effect

conventional  flextentional  sonar

of hydrostatic pressure which is significantly

important for deep water operation. More
advanced structural design should be considered
for deep-water application such as a free-flooded

flextentional transducer.
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