• Title/Summary/Keyword: Resonance Frequency Analysis

Search Result 981, Processing Time 0.032 seconds

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon (화천 지진관측소 지표와 시추공의 배경잡음 특성 비교)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Human-Induced Vibrations in Buildings

  • Wesolowsky, Michael J.;Irwin, Peter A.;Galsworthy, Jon K.;Bell, Andrew K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Occupant footfalls are often the most critical source of floor vibration on upper floors of buildings. Floor motions can degrade the performance of imaging equipment, disrupt sensitive research equipment, and cause discomfort for the occupants. It is essential that low-vibration environments be provided for functionality of sensitive spaces on floors above grade. This requires a sufficiently stiff and massive floor structure that effectively resists the forces exerted from user traffic. Over the past 25 years, generic vibration limits have been developed, which provide frequency dependent sensitivities for wide classes of equipment, and are used extensively in lab design for healthcare and research facilities. The same basis for these curves can be used to quantify acceptable limits of vibration for human comfort, depending on the intended occupancy of the space. When available, manufacturer's vibration criteria for sensitive equipment are expressed in units of acceleration, velocity or displacement and can be specified as zero-to-peak, peak-to-peak, or root-mean-square (rms) with varying frequency ranges and resolutions. Several approaches to prediction of floor vibrations are currently applied in practice. Each method is traceable to fundamental structural dynamics, differing only in the level of complexity assumed for the system response, and the required information for use as model inputs. Three commonly used models are described, as well as key features they possess that make them attractive to use for various applications. A case study is presented of a tall building which has fitness areas on two of the upper floors. The analysis predicted that the motions experienced would be within the given criteria, but showed that if the floor had been more flexible, the potential exists for a locked-in resonance response which could have been felt over large portions of the building.

Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters

  • Kim, Changho;Ko, Youngsu;Kim, Taemin;Yoo, Chan-Sei;Choi, BeomJin;Han, Seung Ho;Jang, YongHo;Kim, Youngho;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.133-137
    • /
    • 2018
  • Increasing interest in prognostics and health management has heightened the need for wireless sensor networks (WSN) with efficient power sources. Piezoelectric energy harvesters using Pb(Zr,Ti)O3 (PZT) are one of the candidate power sources for WSNs as they efficiently convert mechanical vibration energy into electrical energy. These types of devices are resonated at a specific frequency, which has a significant impact on the amount of energy harvested, by external vibration. Hence, precise prediction of mechanical deformation including modal analysis of piezoelectric devices is crucial for estimating the energy generated under specific conditions. In this study, an experimental vibrational system capable of controlling a wide range of frequencies and accelerations was designed to generate mechanical vibration for piezoelectric energy harvesters. In conjunction with MATLAB, the system automatically finds the resonance frequency of harvesters. A small accelerometer and non-contact laser displacement sensor are employed to investigate the mechanical deformation of harvesters. Mechanical deformation under various frequencies and accelerations were investigated and analyzed based on data from two types of sensors. The results verify that the proposed system can be employed to carry out vibration experiments for piezoelectric harvesters and measurement of their mechanical deformation.

Ultrasonic Characterization of a Resonating High-Speed Microcantilever (초음파 기법을 이용한 고속 마이크로 캔틸레버의 공진 특성평가)

  • Kim, Yun Young;Lee, Seonwook;Park, Jiwon;Cho, Younho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.483-489
    • /
    • 2017
  • An ultrasonic technique was developed to characterize the resonance behavior of a microcantilever operating in a megahertz regime. A high-power ultrasonic pulser and a contact transducer were employed to excite the silicon microcantilever, and a Michelson interferometer was used to obtain the time domain waveform. The natural frequency of the microcantilever was evaluated through the fast Fourier transform of the signal, and a numerical analysis using the finite element method confirmed the measurement data. The present study proposes a novel and facile method to evaluate nanoscale materials and structures with high sensitivity compared to conventional approaches.

The Difference between Acoustic Characteristics of Acute Epiglottitis and Peritonsillar Abscess (급성 후두개염과 편도주위 농양 환자의 발화시 조음 및 음성의 차이)

  • Lee, Nam-Hoon;Lee, Jae-Yeon;Lee, Sang-Hyuck;Choi, Jung-Im;Song, Yun-Kyung;Jin, Sung-Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.21 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • Backgraound and Objectives : The voice change can occur in acute epiglottitis or peritonsillar abscess, and the labelings of both changes as a "muffled voice" or "hot potato voice", The aim of this study was to investigate the difference of changes in acoustic feature of voice before and after treatment in patients with acute epiglottitis or peritonsillar abscess. Subjects and Method: 13 patients with acute epiglottitis and 12 patients with peritonsillar abscess were enrolled in the study. Acoustic analysis on sustained Korean vowels /${\alpha}$/, /u/ and /i/ were performed before and after treatment. Results: In patients with acute epiglottitis, the first formant frequency (F1) of /${\alpha}$/ was increased, and the second frequency (F2) of /i/ was decreased. In patients with peritonsillar abscess, F1 and F2 of /${\alpha}$/ were decreased. F1 of /i/ and /u/ were increased, while F2 were decreased. Conclusion : The anatomical and functional changes of oropharynx and larynx by acute epiglottitis and peritonsillar abscess can cause different change in resonance and speech quality. We suggest that these changes could be the cause of 'muffled vocie' in patients of acute epiglottitis or peritonsillar abscess, but different characteristics of phonation in each disease should be distinguished.

  • PDF

Tuned mass dampers for human-induced vibration control of the Expo Culture Centre at the World Expo 2010 in Shanghai, China

  • Lu, Xilin;Ding, Kun;Shi, Weixing;Weng, Dagen
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.607-621
    • /
    • 2012
  • The Expo Culture Centre is one of the permanent buildings at the World Expo 2010 in Shanghai, China. The main structure has an oval shape and consists of 36 radial cantilever steel trusses with different lengths and inner frames made of concrete-filled rectangular steel tube members. Tuned mass dampers are used to reduce the excessive vibrations of the sixth floor that are caused by human-induced resonance. A three-dimensional analytical model of the system is developed, and its main characteristics are established. A series of field tests are performed on the structure, and the test results show that the vertical vibration frequencies of most structural cantilevers are between 2.5 Hz and 3.5 Hz, which falls in the range of human-induced vibration. Twelve pairs of tuned mass dampers weighing 115 tons total were installed in the structure to suppress the vibration response of the system. These mass dampers were tuned to the vertical vibration frequency of the structure, which had the highest possibility of excitation. Test data obtained after the installation of the tuned mass dampers are used to evaluate their effectiveness for the reduction of the vibration acceleration. An analytical model of the structure is calibrated according to the measured dynamic characteristics. An analysis of the modified model is performed and the results show that when people walk normally, the structural vibration was low and the tuned mass dampers have no effect, but when people run at the structural vibration frequency, the tuned mass dampers can reduce the floor vibration acceleration by approximately 15%.

Dynamic Responses of Base Isolation Devices for Telecommunication Equipment in Building Structures (건축물 내 방송통신설비를 위한 면진장치의 동적거동)

  • Jeong, Saebyeok;Choi, Hyoung-Suk;Seo, Young-Deuk;Jung, Donghyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2022
  • In earthquake situations, broadcasting and communication services are directly linked to rapid on-site rescue and effective restoration works. Recently, a variety of base isolation devices are widely introduced on building floors to avoid critical seismic damages of telecommunication facilities. However, in buildings with long fundamental periods, those devices may have undesirable amplification of seismic responses due to resonance effect between the building floors and base isolation devices. This study performs the seismic safety evaluation of two types of base isolation devices deployed for telecommunication facilities in mid- and high-rise buildings through numerical and experimental approaches. It is found that mid- and high-rise buildings can have low-frequency dynamic responses at the top floor when being subjected to design basis earthquake loading. Furthermore, bi-directional shake table testing demonstrated that the selected base isolation devices can exhibit unstable dynamic behaviors under such low-frequency excitations of the floor.

Improvement of Noise Characteristics by Analyzing Power Integrity and Signal Integrity Design for Satellite On-board Electronics (위성용 전장품 탑재보드의 Power Integrity 및 Signal Integrity 설계 분석을 통한 노이즈 성능 개선)

  • Cho, Young-Jun;Kim, Choul-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • As the design complexity and performances are increased in satellite electronic board, noise related problems are also increased. To minimize the noise issues, various design improvements are performed by power integrity and signal integrity analysis in this research. Static power and dynamic power design are reviewed and improved by DC IR drop and power impedance analysis. Signal integrity design is reviewed and improved by time domain signal wave analysis and PCB(Printed Circuit Board) design modifications. And also power planes resonance modes are checked and mitigation measures are verified by simulation. Finally, it is checked that radiated noise is reduced after design improvements by EMC(Electro Magnetic Compatibility) RE(Radiated Emission) measurement results.

Theoretical Analysis of Bragg-Reflector Type FBAR with Resonance Mode (공진 모드에 따른 Bragg-Reflector Type FBAR 의 이론적 분석)

  • 조문기;윤영섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.9-18
    • /
    • 2003
  • Two configurations of Film Bulk Acoustic Wave Resonators with acoustic quater-wave bragg reflector layers are theoretically analyzed using equivalent circuits and the difference of their characteristics are discussed. We compare the characteristics of λ/2 mode to those of ideal FBAR with top and bottom electrode contacting air and the characteristics of λ/4 mode to those of ideal FBAR with top electrode contacting air and bottom electrode clamped. We assume that the piezoelectric film is ZnO, the electrode is A1 and the substrate is Si, ABCD parameters are extracted and input impedance is calculated by converting the equivalent circuit from Mason equivalent circuits to the simplified equivalent circuits that ABCD parameters are extracted possible, From the variation of resonance frequency due to the change of thickness of reflector layers and the variation of electrical Q due to the change of mechanical Q of reflector layers, it is confirmed that the reflector layer just under the bottom electrode have the greatest effect on the varation of resonance frequency and electrical Q. It is shown that the number of reflector layers required for the saturation of electrical Q decreases with the increase of the impedance ratio of reflector layers and electrical Q of λ/2 mode is larger than that of λ/4 mode, Electromechanical coupling factor is independent of the number of layers, The impedance ratio of reflector layers becomes larger as the electromechanical coupling factor becomes larger, The electromechanical coupling factor of the two mode are smaller than those of ideal FBARs because of the trapping of acoustic energy in the reflector layers, The insertion loss of the ladder filter decreases with the increase of the number of reflector layers but the bandwidth is not affected much by the number of reflector layers, As the impedance ratio of reflector layers becomes larger the insertion loss becomes smaller and the bandwidth becomes wider, In our analysis of the two mode, characteristics of λ/2 mode appear to be slightly more favorable than that of λ/4 mode