• 제목/요약/키워드: Resolution enhancement

Search Result 385, Processing Time 0.026 seconds

Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement (Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상)

  • Jang, Hyo-Sik;Kim, Duk-Gyoo;Jung, Yoon-Soo;Lee, Tae-Gyoun;Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

Recognition resolution enhancement of ultrasonic sensors via multiple steps of transmitter voltages

  • Na, Seung-You;Park, Min-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.409-412
    • /
    • 1996
  • Ultrasonic sensors are widely used in various applications due to advantages of low cost, simplicity in construction, mechanical robustness, and little environmental restriction in usage. But the main purposes of the noncontact sensing are rather narrowly confined within object detection and distance measurement. For the application of object recognition, ultrasonic sensors exhibit several shortcomings of poor directionality which results in low spatial resolution of objects, and specularity which gives frequent erroneous range readings. To resolve these problems in object recognition, an array of the sensor has been used. To improve the spatial resolution, more number of sensors are used in essence throughout the various devices of the sensor arrays. Under the disguise of a fixed number of the sensors, the array can be shifted mechanically in several steps. In this paper we propose a practical sensor resolution enhancement method using an electronic circuit accompanying the sensor array. The circuit changes the transmitter output voltage in several steps. Using the known sensor characteristics, a set of different return echo signals provide enhanced spatial resolution. The improvement is obtained with neither the cost of the increased number of the sensors nor extra mechanical devices.

  • PDF

Loss Information Estimation and Image Resolution Enhancement Technique using Low (하위 레벨 보간을 이용한 손실 정보 추정과 영상 해상도 향상 기법)

  • Kim, Won-Hee;Kim, Jong-Nam
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.18-26
    • /
    • 2009
  • Image resolution enhancement algorithm is a basic technique for image enlargement and restoration. The main problem is the image quality degradation such as blurring or blocking effects. In this paper, we propose loss information estimation and image resolution enhancement method using low level interpolation method. In the proposed method, loss information is computed by downsampling -interpolation process of obtained low resolution image. We estimate loss information of high resolution image using interpolation of the computed loss information. Lastly, we add up interpolated high resolution image and the estimated loss information which is applied a weight factor. Our experiments obtained the average PSNR 1.4dB which is improved results better than conventional algorithm. Also subjective image quality is more clearness and distinctness. The proposed method may be helpful for various video applications which required improvement of image.

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

Speckle Noise Reduction and Edge Enhancement in Ultrasound Images Based on Wavelet Transform

  • Kim, Yong-Sun;Ra, Jong-Beom
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.122-131
    • /
    • 2008
  • For B-mode ultrasound images, we propose an image enhancement algorithm based on a multi-resolution approach, which consists of edge enhancing and noise reducing procedures. Edge enhancement processing is applied sequentially to coarse-to-fine resolution images obtained from wavelet-transformed data. In each resolution, the structural features of each pixel are examined through eigen analysis. Then, if a pixel belongs to an edge region, we perform two-step filtering: that is, directional smoothing is conducted along the tangential direction of the edge to improve continuity and directional sharpening is conducted along the normal direction to enhance the contrast. In addition, speckle noise is alleviated by proper attenuation of the wavelet coefficients of the homogeneous regions at each band. This region-based speckle-reduction scheme is differentiated from other methods that are based on the magnitude statistics of the wavelet coefficients. The proposed algorithm enhances edges regardless of changes in the resolution of an image, and the algorithm efficiently reduces speckle noise without affecting the sharpness of the edge. Hence, compared with existing algorithms, the proposed algorithm considerably improves the subjective image quality without providing any noticeable artifacts.

Image Resolution Enhancement by Improved S&A Method using POCS (POCS 이론을 이용한 개선된 S&A 방법에 의한 영상의 화질 향상)

  • Yoon, Soo-Ah;Lee, Tae-Gyoun;Lee, Sang-Heon;Son, Myoung-Kyu;Kim, Duk-Gyoo;Won, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1392-1400
    • /
    • 2011
  • In most digital imaging applications, high-resolution images or videos are usually desired for later image processing and analysis. The image signal obtained from general imaging system occurs image degradation during the process of image acquirement caused by the optics, physical constraints and the atmosphere effects. Super-resolution reconstruction, one of the solution to address this problem, is image reconstruction technique that produces a high-resolution image from several low-resolution frames in video sequences. In this paper, we propose an improved super-resolution method using Projection onto Convex Sets (POCS) method based on Shift & Add (S&A). The image using conventional algorithms is sensitive to noise. To solve this problem, we propose a fusion algorithm of S&A and POCS. Also we solve the problem using BLPF (Butterworth Low-pass Filter) in frequency domain as optical blur. Our method is robust to noise and has sharpness enhancement ability. Experimental results show that the proposed super-resolution method has better resolution enhancement performance than other super-resolution methods.

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

An Image Resolution Enhancement Method Using Loss Information Estimation (손실 정보 추정을 이용한 영상 해상도 향상 기법)

  • Kim, Won-Hee;Kim, Gil-Ho;Kim, Jong-Nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.657-660
    • /
    • 2009
  • An image interpolation is a basis technique for various image processing and is required to minimize approaches for image quality deterioration. In this paper, we propose an improved bilinear interpolation using loss information estimation. In the proposed algorithm, we estimate loss information of low resolution image using down-sampling and interpolation of acquisition low resolution. The estimated loss information is utilized interpolated image, and it decrease image quality deterioration. Our experiments obtained the average PSNR 0.97~1.79dB which is improved results better than conventional method for sensitive image quality. Also, subjective image quality with edge region is more clearness. The proposed method may be helpful for applications in various multimedia systems such as image resolution enhancement and image restoration.

  • PDF

Modern Pretreatment methods in NIR Spectroscopy

  • Yukiteru Katsumoto;Jian Hui Jiang R.;James Berry;Yukihiro Ozaki
    • Near Infrared Analysis
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • This review paper outlines modern pretreatment methods used in NIR spectroscopy. The pretreatment methods can be divided into four categories. One method in is noise reduction. Smoothing is a representative method for the noise reduction. Another is baseline correction. The second derivative and multiplicative scatter correction (MSC) are most frequently employed for baseline correction. The third is centering and normalization and the last is resolution enhancement. Difference spectra, mean centering and second derivative are used in NIR spectroscopy as resolution enhancement methods. In this paper advantages and drawbacks of pretreatment methods currently used in NIR spectroscopy are discussed with many examples of NIR spectra.