• Title/Summary/Keyword: Resolution Conversion

Search Result 282, Processing Time 0.034 seconds

Spectroscopic Detection of Alfvénic Waves in Chromospheric Mottles of a Solar Quiet Region

  • Kwak, Hannah;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.2-78.2
    • /
    • 2021
  • We present high resolution spectroscopic observations of transverse magnetohydrodynamic (MHD) waves in mottles located near the solar disk center. Different from previous studies that used transversal displacements of the mottles in the imaging data, we investigated the line-of-sight (LOS) velocity oscillations of the mottles in the spectral data. The observations were carried out by using the Fast Imaging Solar Spectrograph of the 1.6 meter Goode Solar Telescope of Big Bear Solar Observatory. Utilizing the spectral data of the Hα and Ca II 8542 Å lines, we measure the LOS velocity of a quiet region including the mottles and rosettes that correspond to the footpoints of the mottles. Our major findings are as follows: (1) Alfvénic waves are pervasive in the mottles. (2) The dominant period of the waves is 2 to 4 minutes. (3) From the time-distance maps of the three-minute filtered LOS velocity constructed along the mottles, it is revealed that the transverse waves in the mottles are closely related to the longitudinal waves in the rosettes. Our findings support the notion that Alfvénic waves can be generated by mode conversion of the slow magnetoacoustic waves as was shown in sunspot regions by Chae et al. (2021).

  • PDF

A Comprehensive Study on Key Components of Grayscale-based Deepfake Detection

  • Seok Bin Son;Seong Hee Park;Youn Kyu Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.8
    • /
    • pp.2230-2252
    • /
    • 2024
  • Advances in deep learning technology have enabled the generation of more realistic deepfakes, which not only endanger individuals' identities but also exploit vulnerabilities in face recognition systems. The majority of existing deepfake detection methods have primarily focused on RGB-based analysis, offering unreliable performance in terms of detection accuracy and time. To address the issue, a grayscale-based deepfake detection method has recently been proposed. This method significantly reduces detection time while providing comparable accuracy to RGB-based methods. However, despite its significant effectiveness, the "key components" that directly affect the performance of grayscale-based deepfake detection have not been systematically analyzed. In this paper, we target three key components: RGB-to-grayscale conversion method, brightness level in grayscale, and resolution level in grayscale. To analyze their impacts on the performance of grayscale-based deepfake detection, we conducted comprehensive evaluations, including component-wise analysis and comparative analysis using real-world datasets. For each key component, we quantitatively analyzed its characteristics' performance and identified differences between them. Moreover, we successfully verified the effectiveness of an optimal combination of the key components by comparing it with existing deepfake detection methods.

Compensation Methods for Non-uniform and Incomplete Data Sampling in High Resolution PET with Multiple Scintillation Crystal Layers (다중 섬광결정을 이용한 고해상도 PET의 불균일/불완전 데이터 보정기법 연구)

  • Lee, Jae-Sung;Kim, Soo-Mee;Lee, Kwon-Song;Sim, Kwang-Souk;Rhe, June-Tak;Park, Kwang-Suk;Lee, Dong-Soo;Hong, Seong-Jong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • Purpose: To establish the methods for sinogram formation and correction in order to appropriately apply the filtered backprojection (FBP) reconstruction algorithm to the data acquired using PET scanner with multiple scintillation crystal layers. Materials and Methods: Formation for raw PET data storage and conversion methods from listmode data to histogram and sinogram were optimized. To solve the various problems occurred while the raw histogram was converted into sinogram, optimal sampling strategy and sampling efficiency correction method were investigated. Gap compensation methods that is unique in this system were also investigated. All the sinogram data were reconstructed using 20 filtered backprojection algorithm and compared to estimate the improvements by the correction algorithms. Results: Optimal radial sampling interval and number of angular samples in terms of the sampling theorem and sampling efficiency correction algorithm were pitch/2 and 120, respectively. By applying the sampling efficiency correction and gap compensation, artifacts and background noise on the reconstructed image could be reduced. Conclusion: Conversion method from the histogram to sinogram was investigated for the FBP reconstruction of data acquired using multiple scintillation crystal layers. This method will be useful for the fast 20 reconstruction of multiple crystal layer PET data.

Enhanced Light Harvesting by Fast Charge Collection Using the ITO Nanowire Arrays in Solid State Dye-sensitized Solar Cells

  • Han, Gill Sang;Yu, Jin Sun;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.463-463
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) have generated a strong interest in the development of solid-state devices owing to their low cost and simple preparation procedures. Effort has been devoted to the study of electrolytes that allow light-to-electrical power conversion for DSSC applications. Several attempts have been made to substitute the liquid electrolyte in the original solar cells by using (2,2',7,7'-tetrakis (N,N-di-p-methoxyphenylamine)-9-9'-spirobi-fluorene (spiro-OMeTAD) that act as hole conductor [1]. Although efficiencies above 3% have been reached by several groups, here the major challenging is limited photoelectrode thickness ($2{\mu}m$), which is very low due to electron diffusion length (Ln) for spiro-OMeTAD ($4.4{\mu}m$) [2]. In principle, the $TiO_2$ layer can be thicker than had been thought previously. This has important implications for the design of high-efficiency solid-state DSSCs. In the present study, we have fabricated 3-D Transparent Conducting Oxide (TCO) by growing tin-doped indium oxide (ITO) nanowire (NWs) arrays via a vapor transport method [3] and mesoporous $TiO_2$ nanoparticle (NP)-based photoelectrodes were prepared using doctor blade method. Finally optimized light-harvesting solid-state DSSCs is made using 3-D TCO where electron life time is controlled the recombination rate through fast charge collection and also ITO NWs length can be controlled in the range of over $2{\mu}m$ and has been characterized using field emission scanning electron microscopy (FE-SEM). Structural analyses by high-resolution transmission electron microscopy (HRTEM) and X-Ray diffraction (XRD) results reveal that the ITO NWs formed single crystal oriented [100] direction. Also to compare the charge collection properties of conventional NPs based solid-state DSSCs with ITO NWs based solid-state DSSCs, we have studied intensity modulated photovoltage spectroscopy (IMVS), intensity modulated photocurrent spectroscopy (IMPS) and transient open circuit voltages. As a result, above $4{\mu}m$ thick ITO NWs based photoelectrodes with Z907 dye shown the best performing device, exhibiting a short-circuit current density of 7.21 mA cm-2 under simulated solar emission of 100 mW cm-2 associated with an overall power conversion efficiency of 2.80 %. Finally, we achieved the efficiency of 7.5% by applying a CH3NH3PbI3 perovskite sensitizer.

  • PDF

Detection of Precise Crop Locations under Vinyl Mulch using Non-integral Moving Average Applied to Thermal Distribution

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-Seung;Lee, Dong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.42 no.2
    • /
    • pp.117-125
    • /
    • 2017
  • Purpose: Damage to pulse crops by wild birds is a serious problem. The damage is to such an extent that the rate of damage during the period between seeding and cotyledon stages reaches 54.6% on an average. In this study, a crop-position detection method was developed wherein infrared (IR) sensors were used to determine the cotyledon position under a vinyl mulch. Methods: IR sensors that helped measure the temperature were used to locate the cotyledons below the vinyl mulch. A single IR sensor module was installed at three locations of the crops (peanut, red lettuce, and crown daisy) in the cotyledon stage. The representative thermal response of a $16{\times}4$ pixel area was detected using this sensor in the case where the distance from the target was 25 cm. A spatial image was applied to the two-dimensional temperature distribution using a non-integral moving-average method. The collected data were first processed by taking the moving average via interpolation to determine the frame where the variance was the lowest for a resolution unit of 1.02 cm. Results: The temperature distribution was plotted corresponding to a distance of 10 cm between the crops. A clear leaf pattern of the crop was visually confirmed. However, the temperature distribution after the normalization was unclear. The image conversion and frequency-conversion graphs were obtained based on the moving average by averaging the points corresponding to a frequency of 40 Hz for 8 pixels. The most optimized resolutions at locations 1, 2, and 3 were found on 3.4, 4.1, and 5.6 Pixels, respectively. Conclusions: In this study, to solve the problem of damage caused by birds to crops in the cotyledon stage after seeding, the vinyl mulch is punched after seeding. The crops in the cotyledon stage could be accurately located using the proposed method. By conducting the experiments using the single IR sensor and a sliding mechanical device with the help of a non-integral interpolation method, the crops in the cotyledon stage could be precisely located.

A High Efficiency Power Conversion Circuit with Wide ZVS Range for Large Screen PDP Sustaining Power Module (넓은 영전압 스위칭 범위를 갖는 대화면 PDP용 유지전원단을 위한 고효율 전력 변환회로)

  • Park Kyung-Hwa;Moon Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.578-586
    • /
    • 2005
  • Recently, due to the launch of digital broadcasting service, the demand of Flat Panel Display (FPD) is sharply rising. Among them, the PDP is expected to be one of the most promising digital displays of next generation because of its large screen size, high resolution, thinness and board field of view. Meanwhile, the PDP uses ADS (Address Display-period Separation) scheme which divide one subfield into address and sustaining period to express the grey scale of images. Since the output of sustaining power module Is mostly used for sustaining period, the load of the sustaining power module can be considered as a pulsating load. Due to this particular load condition, if the wide ZVS range of the power switches is not guaranteed, the hard switching causes large amount of switching loss and serious thermal problem in power module. In this paper, a high efficiency power conversion circuit for 60' PDP sustaining power module which achieves wide ZVS range with the help of additional ZVS tank is proposed. According to the various gating methods, the different operations of the proposed converter are presented. And, to confirm the properties of the proposed converter, an experimental prototype of 900W power converter is constructed md tested. As a result, more than $92\%$ of high efficiency is obtained at $10\%$ load condition, and the ZVS operation is achieved from full load to $10\%$ load condition.

Catadioptric NA 0.6 Objective Design in 193 nm with 266 nm Autofocus (이중 파장 심자외선 카타디옵트릭 NA 0.6 대물렌즈 광학 설계)

  • Do Hee Kim;Seok Young Ju;Jun Ho Lee;Hagyong Kihm;Ho-Soon Yang
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • We designed a catadioptric objective lens with a 0.6 numerical aperture (NA) for semiconductor inspection at 193 nm. The objective lens meets major requirements such as a spatial resolution of 200 nm and a field of view (FOV) of 0.15 mm or more. We selected a wavelength of 266 nm for autofocus based on the availability of the light source. First, we built the objective lenses of three lens groups: a focusing lens group, a field-lens group, and an NA conversion group. In particular, the NA conversion group is a group of catadioptric lenses that convert the numerical aperture of the beam focused by the prior groups to the required value, i.e., 0.6. The last design comprises 11 optical elements with root-mean-squared (RMS) wavefront aberrations less than λ/80 over the entire field of view. We also achieved the athermalization of the objective lens with focus-shift alone satisfying the performance of RMS wavefront aberration below λ/30 at a temperature range of 20 ± 1.2 ℃.

A 14b 100MS/s $3.4mm^2$ 145mW 0.18um CMOS Pipeline A/D Converter (14b 100MS/s $3.4mm^2$ 145mW 0.18un CMOS 파이프라인 A/D 변환기)

  • Kim Young-Ju;Park Yong-Hyun;Yoo Si-Wook;Kim Yong-Woo;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.5 s.347
    • /
    • pp.54-63
    • /
    • 2006
  • This work proposes a 14b 100MS/s 0.18um CMOS ADC with optimized resolution, conversion speed, die area, and power dissipation to obtain the performance required in the fourth-generation mobile communication systems. The 3-stage pipeline ADC, whose optimized architecture is analyzed and verified with behavioral model simulations, employs a wide-band low-noise SHA to achieve a 14b level ENOB at the Nyquist input frequency, 3-D fully symmetric layout techniques to minimize capacitor mismatch in two MDACs, and a back-end 6b flash ADC based on open-loop offset sampling and interpolation to obtain 6b accuracy and small chip area at 100MS/s. The prototype ADC implemented in a 0.18um CMOS process shows the measured DNL and INL of maximum 1.03LSB and 5.47LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 59dB and 72dB, respectively, and a power consumption of 145mW at 100MS/s and 1.8V. The occupied active die area is $3.4mm^2$.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

A Selective Current-supplying Parallel A/D Converter (선택적 전류공급구조를 갖는 병렬형 A/D 변환기)

  • Yang, Jung-Wook;Kim, Ook;Kim, Won-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1983-1993
    • /
    • 1993
  • A power-reduction technique for full-flash A/D converters is proposed. As the resolution of a full-flash A/D converter increases linearly, the number of comparators increases exponentially. The power dissipation is generally larger than other A/D converter architectures because there are many comparators, and they are operating continuously. In this proposed architecture, only a selected number of conmarators are made to operate instead of activating all the comparators of the full-flash A/D convertor. To determine whichcomparators should be activated, voltage levelfider circuits are used. A new clock driver is developed to suppress the dynamic glitch noise which is fed back into the input stage of the comparator. By using this clock driver, the glitch noise in the current source is reduced to one fourth of that when the typical clock signal is applied. The proposed architecture has been implemented with 1.2 m 5GHz BiCMOS technology. The maximum conversion speed is 350Msamples/s. and dissipates only 900mW.

  • PDF