• 제목/요약/키워드: Resistant screening

검색결과 335건 처리시간 0.031초

Screening of Resistance Melon Germplasm to Phytotpthora Rot caused by Phytophthora Capsici

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Jee, Hyeong-Jin;Hong, Sung-Jun;Park, Jong-Ho;Lee, Min-Ho;Han, Eun-Jung
    • 한국작물학회지
    • /
    • 제57권4호
    • /
    • pp.389-396
    • /
    • 2012
  • Melon (Cucumis melo) is an annual herbaceous plant of the family Cucurbitaceae. Phytophthora rot, caused by Phytophthora capsici is a serious threat to cucurbits crops production as it directly infects the host plant, and it is difficult to control because of variable pathogenicity. This study investigated the resistance of 450 accessions of melon germplasm against Phytophthora rot by inoculating the seedlings with sporangial suspension ($10^{5\;or\;6}$ zoosporangia/ml) of P. capsici. Disease incidence of Phytophthora rot was observed on the melon germplasm at 7-day intervals for 35 days after inoculation. Susceptible melon germplasm showed either severe symptoms of stem and root rot or death of the whole plant. Twenty out of 450 tested accessions showed less than 20% disease incidence, of which five accessions showed a high level of resistance against Phytopthtora rot. Five resistant accessions, namely IT119813, IT138016, IT174911, IT174927, and IT906998, scored 0% disease incidence under high inoculum density of P. capsici ($10^6$ zoosporangia/mL). We recommend that these candidate melon germplasm may be used as genetic resources in the breeding of melon varieties resistant to Phytophthora rot.

Screening of Selected Korean Sweetpotato (Ipomoea batatas) Varieties for Fusarium Storage Root Rot (Fusarium solani) Resistance

  • Lee, Seung-yong;Paul, Narayan Chandra;Park, Won;Yu, Gyeong-Dan;Park, Jin-Cheon;Chung, Mi-Nam;Nam, Sang-Sik;Han, Seon-Kyeong;Lee, Hyeong-Un;Goh, San;Lee, Im Been;Yang, Jung-Wook
    • 한국균학회지
    • /
    • 제47권4호
    • /
    • pp.407-416
    • /
    • 2019
  • A common post-harvest disease of sweetpotato tuber is root rot caused by Fusarium solani in Korea as well as the other countries. Storage root rot disease was monitored earlier on sweetpotato (Ipomoea batatas) in storehouses of different locations in Korea. In the present study, an isolate SPL16124 was choosen and collected from Sweetpotato Research Lab., Bioenergy Crop Research Institute, NICS, Muan, Korea, and confirmed the identification as Fusarium solani by conidial and molecular phylogenetic analysis (internal transcribed spacer ITS and translation elongation factor EF 1-α gene sequences). The isolate was cultured on potato dextrose agar, and conidiation was induced. The fungus was screened for Fusarium root rot on tuber of 14 different varieties. Among the tested variety, Yenjami, Singeonmi, Daeyumi, and Sinjami showed resistant to root rot disease. Additionally, the pathogen was tested for pathogenicity on stalks of these varieties. No symptom was observed on the stalk, and it was confirmed that the disease is tissue specific.

Myxococcus stipitatus JW117이 생산하는 Polyene계 세포독성 물질의 분리 및 특성 (Isolation and Properties of Cytotoxic Polyene Antibiotics Produced by Myxococcus stipitatus JW117.)

  • 안종웅;최상운;권호정
    • 한국미생물·생명공학회지
    • /
    • 제30권2호
    • /
    • pp.157-161
    • /
    • 2002
  • 암세포가 특정 항암제에 의해 내성을 획득하면 구조가 상이한 타 항암제에도 교차내성을 나타내는 이른바 암세포의 다약제 내성(MDR)이 암 화학요법에 있어서 가장 심각한 문제가 되고 있다. 본 연구에서는 다약제 내성 암세포주인 CL02 세포를 이용하여 점액세균의 대사산물을 대상으로 다약재 내성 암세포에 유효한 항암물질을 탐색하는 과정에서, Myxococcus stipitatus로 동정된 JW117 균주의 대사산물에서 우수한 활성을 발견하고 그 활성본체로서 polyene계 화합물인 phenalamides $A_1$, $A_2$, $A_3$를 분리하였다. Phenalamides $A_1$, $A_2$, $A_3$는 인체기원의 암세포에 대해 모두 강한 세포독성($IC_{50}$/ : 0.23~0.57 $\mu\textrm{g}$/ml)을 나타낼 뿐 아니라 다약제내성 세포주인 CL02와 cisplatin내성 세포주인 CP70에 대해서도 감수성 세포주와 동일한 활성을 나타내어 다약제 내성을 극복하는 우수한 활성 물질임을 확인하였다.

다제내성 Acinetobacter baumannii에 유효한 방선균 B-51의 탐색 및 이 균주가 생산하는 항생물질 발효 최적 배양 조건 (Screening and Optimal Culture Conditions of Antibiotic-Producing Actinomycetes B-51 for Multidrug Resistant Acinetobacter baumannii)

  • 이문수;김관필;방병호
    • 한국식품영양학회지
    • /
    • 제23권1호
    • /
    • pp.63-69
    • /
    • 2010
  • 다제내성균 A. baumannii에 유용한 항생물질을 생산하는 방선균을 선별하기 위하여 토양에서 분리한 방선균 300여 균주를 대상으로 항균 활성을 실험하여 그 활성이 가장 뛰어난 B-51 균주를 최종적으로 선별하였다. 이 균으로부터 항생물질 생산을 위한 최적 조건을 조사하기 위하여 발효 배지를 기본배지로 하여 동일조건 하에서 탄소원, 질소원, 무기염 및 인삼염만을 다르게 하여 항균 활성을 실험한 결과 glycerol 2%, soybean meal 0.5%, $CaCl_2$ 0.01%, $MgSO_4{\cdot}7H_2O$ 0.01%, $KH_2PO_4$ 0.01%에서 항생물질 생산이 가장 높았다. 또한 이렇게 결정된 배지 조성에서 초기 pH 6.0, 배양온도 $30^{\circ}C$, 배양시간 76시간 조건 하에서 항생물질 생산이 가장 많았다. 항생물질을 생산하는 대부분의 방선균이 항생물질 생산 시 배양액의 final pH가 중성 혹은 약 알칼리인 점을 비교해 볼 때 본 균주인 B-51의 경우 항생물질 생산능이 높은 경우 final pH 4.0 부근인 산성 pH를 보여 그간의 논문보고와는 상반되는 결과를 보였다.

Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells

  • Ahmad, Bashir;Rizwan, Muhammad;Rauf, Abdur;Raza, Muslim;Azam, Sadiq;Bashir, Shumaila;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.2083-2087
    • /
    • 2016
  • A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

Screening of Pumpkin (Cucurbita spp.) Germplasm for Resistance to Powdery Mildew at Various Stages of Seedlings Growth

  • Luitel, Binod Prasad;Kim, Sang Gyu;Sung, Jung Sook;Hur, On-Sook;Yoon, Mun-Sup;Rhee, Ju-Hee;Baek, Hyung-Jin;Ryu, Kyoung-Yul;Ko, Ho-Cheol
    • 식물병연구
    • /
    • 제22권3호
    • /
    • pp.133-144
    • /
    • 2016
  • Powdery mildew (Podosphaera xanthii) causes severe damage to pumpkin crops grown in open fields and plastic house. Initially, we used ten accessions of pumpkin species; Cucurbita pepo (3), C. maxima (2), C. moschata (2), and C. argyrosperma (3) to study the disease progress in different stages of seedling development. Commercial pumpkin varieties were used as susceptible host for inoculum management and young seedlings were inoculated by dusting powdery mildew spores on the cotyledons, 1-true-leaf and 2-true-leaf seedling stages. Based on initial study, we further evaluated 218 pumpkinaccessions for their resistance to powdery mildew in different seedling stages under plastic house. Area under disease progress curve (AUDPC) and relative AUDPC (rAUDPC) was higher in cotyledonary and 1-true-leaf than 2-true-leaf stage. Seedlings at cotyledons and 1-true-leaf seedling stage displayed more susceptibility to powdery mildew. Based on evaluation of 2-true-leaf stage, IT 110859 and IT 278459 from C. pepo and C. argyrosperma identified as resistant (<0.2). Of the 228 pumpkin accessions, 21 (9.2%) pumpkin accessions consisting of C. pepo (2), C. maxima (5), C. moschata (13), and C. argyrosperma (1) exhibited intermediate resistance (<0.4) to powdery mildew and these accessions are useful to growers for its rational management.

Identification of Novel Source of Resistance and Differential Response of Allium Genotypes to Purple Blotch Pathogen, Alternaria porri (Ellis) Ciferri

  • Nanda, Satyabrata;Chand, Subodh Kumar;Mandal, Purander;Tripathy, Pradyumna;Joshi, Raj Kumar
    • The Plant Pathology Journal
    • /
    • 제32권6호
    • /
    • pp.519-527
    • /
    • 2016
  • Purple blotch, caused by Alternaria porri (Ellis) Cifferi, is a serious disease incurring heavy yield losses in the bulb and seed crop of onion and garlic worldwide. There is an immediate need for identification of effective resistance sources for use in host resistance breeding. A total of 43 Allium genotypes were screened for purple blotch resistance under field conditions. Allium cepa accession 'CBT-Ac77' and cultivar 'Arka Kalyan' were observed to be highly resistant. In vitro inoculation of a selected set of genotypes with A. porri, revealed that 7 days after inoculation was suitable to observe the disease severity. In vitro screening of 43 genotypes for resistance to A. porri revealed two resistant lines. An additional 14 genotypes showed consistent moderate resistance in the field as well as in vitro evaluations. Among the related Allium species, A. schoenoprasum and A. roylei showed the least disease index and can be used for interspecific hybridization with cultivated onion. Differential reaction analysis of three A. porri isolates (Apo-Chiplima, Apn-Nasik, Apg-Guntur) in 43 genotypes revealed significant variation among the evaluated Allium species (P = 0.001). All together, the present study suggest that, the newly identified resistance sources can be used as potential donors for ongoing purple blotch resistance breeding program in India.

방사선을 이용한 벼 흰잎마름병 저항성 돌연변이 벼 계통의 선발 (Screening of Gamma Radiation-Induced Pathogen Resistance Rice Lines against Xanthomonas oryzae pv. oryzae)

  • 임찬주;이하연;김웅범;아마드 라자;문제선;김동섭;권석윤
    • 방사선산업학회지
    • /
    • 제4권3호
    • /
    • pp.209-213
    • /
    • 2010
  • Bacterial blight is one of the most serious diseases of rice (Oryza sativa L.), and it has been known that Xanthomonas oryzae pv. oryzae (Xoo) causes this disease symptom. To develop resistance rice cultivars against Xoo, 3,000 lines of $M_3$ mutants, which were irradiated with gamma ray, were tested by 'scissor-dip method' primarily, and 191 putative resistant lines were selected. In $M_4$ generation, these lines were screened again with various ways such as measuring of symptom of bacterial blight in leaf, number of tiller, fresh weight, and phenotypic segregation ratio in next generation. Finally, six resistance lines were selected. RT-PCR analysis revealed that these lines displayed high level of R-genes such as Xa21, Pi36, and Pi-ta. These results indicate that mutations by gamma ray cause disruptions of regulatory signal transduction systems of these R-genes. Furthermore, these selected mutants could be useful for the development of rice cultivar resistant to Xoo.

Factors Associated with Vancomycin-Resistant Enterococcus Colonization in Patients Transferred to Emergency Departments in Korea

  • Kim, Hyun Soon;Kim, Dae Hee;Yoon, Hai-jeon;Lee, Woon Jeong;Woo, Seon Hee;Choi, Seung Pill
    • Journal of Korean Medical Science
    • /
    • 제33권48호
    • /
    • pp.295.1-295.7
    • /
    • 2018
  • Background: Vancomycin-resistant enterococci (VRE) infections have become a major healthcare-associated pathogen problem worldwide. Nosocomial VRE infections could be effectively controlled by screening patients at high risk of harboring VRE and thereby lowering the influx of VRE into healthcare centers. In this study, we evaluated factors associated with VRE colonization in patients transferred to emergency departments, to detect patients at risk for VRE carriage. Methods: This study was conducted in the emergency department of a medical college-affiliated hospital in Korea. Every patient transferred to the emergency department and admitted to the hospital from January to December 2016 was screened for VRE using rectal cultures. In this cross-sectional study, the dependent variable was VRE colonization and the independent variables were demographic and clinical factors of the patients and factors related to the transferring hospital. Patients were divided into two groups, VRE and non-VRE, and previously collected patient data were analyzed. Then we performed logistic regression analyses of characteristics that differed significantly between groups. Results: Out of 650 patients, 106 (16.3%) had positive VRE culture results. Significant variables in the logistic analysis were transfer from geriatric long-term care hospital (adjusted odds ration [aOR]: 8.017; 95% confidence interval [CI]: 1.378-46.651), hospital days (4-7 days; aOR: 7.246; 95% CI: 3.229-16.261), duration of antimicrobial exposure (1-3 days; aOR: 1.976; 95% CI: 1.137-3.436), and age (aOR: 1.025; 95% CI: 1.007-1.043). Conclusion: VRE colonization in patients transferred to the emergency department is associated primarily with factors related to the transferred hospitals rather than demographic and clinical characteristics.

An in vitro Actinidia Bioassay to Evaluate the Resistance to Pseudomonas syringae pv. actinidiae

  • Wang, Faming;Li, Jiewei;Ye, Kaiyu;Liu, Pingping;Gong, Hongjuan;Jiang, Qiaosheng;Qi, Beibei;Mo, Quanhui
    • The Plant Pathology Journal
    • /
    • 제35권4호
    • /
    • pp.372-380
    • /
    • 2019
  • Pseudomonas syringae pv. actinidiae (Psa) is by far the most important pathogen of kiwifruit. Sustainable expansion of the kiwifruit industry requires the use of Psa-tolerant or resistant genotypes for the breeding of tolerant cultivars. However, the resistance of most existing kiwifruit cultivars and wild genotypes is poorly understood, and suitable evaluation methods of Psa resistance in Actinidia have not been established. A unique in vitro method to evaluate Psa resistance has been developed with 18 selected Actinidia genotypes. The assay involved debarking and measuring the lesions of cane pieces inoculated with the bacterium in combination with the observation of symptoms such as callus formation, sprouting of buds, and the extent to which Psa invaded xylem. Relative Psa resistance or tolerance was divided into four categories. The division results were consistent with field observations. This is the first report of an in vitro assay capable of large-scale screening of Psa-resistance in Actinidia germplasm with high accuracy and reproducibility. The assay would considerably facilitate the breeding of Psa-resistant cultivars and provide a valuable reference and inspiration for the resistance evaluation of other plants to different pathogens.