• Title/Summary/Keyword: Resistant length

Search Result 322, Processing Time 0.041 seconds

Growth Characteristics of Barley Seedlings in Hydroponic Culture Conditioned Artificial Wet Injury (양액재배를 이용한 인위적 습해유발조건에서 보리 유묘의 생육특성)

  • 윤성중;박미은;최혜란;최재성;김정곤;서세정;강현중;김정곤;최경구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.3
    • /
    • pp.160-168
    • /
    • 2003
  • This study was carried out to investigate the effects of induced wet-injury conditions on barley seedling growth. Barley seedlings at the three leaf stage were grown in culture solutions with various combinations of dissolved oxygen (DO), nutrients and citric acid (CA) concentrations. Seedling growth was reduced by hypoxia. Root length and root fresh weight were most severely reduced under 1 ppm DO. Shoot growth was slightly reduced but not root growth under low nutrient condition. Seedling growth was reduced by CA in a concentration-dependant manner, Response of seedling growth was efficiently differentiated in a solution containing 1 ppm DO, one tenth of the normal P, K and Mg concentration and 3 mM CA. Under this induced wet-injury condition, overall seedling growth of 6 cultivars was reduced by 11 to 19% compared to the control condition. The results suggest that the induced wet-injury condition can be used for the screening of resistant genotypes at the seedling stage.

Cloning, Expression, and Characterization of a New Xylanase from Alkalophilic Paenibacillus sp. 12-11

  • Zhao, Yanyu;Meng, Kun;Luo, Huiying;Yang, Peilong;Shi, Pengjun;Huang, Huoqing;Bai, Yingguo;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.861-868
    • /
    • 2011
  • A xylanase gene, xyn7c, was cloned from Paenibacillus sp. 12-11, an alkalophilic strain isolated from the alkaline wastewater sludge of a paper mill, and expressed in Escherichia coli. The full-length gene consists of 1,296 bp and encodes a mature protein of 400 residues (excluding the putative signal peptide) that belongs to the glycoside hydrolase family 10. The optimal pH of the purified recombinant XYN7C was found to be 8.0, and the enzyme had good pH adaptability at 6.5-8.5 and stability over a broad pH range of 5.0-11.0. XYN7C exhibited maximum activity at $55^{\circ}C$ and was thermostable at $50^{\circ}C$ and below. Using wheat arabinoxylan as the substrate, XYN7C had a high specific activity of 1,886 U/mg, and the apparent $K_m$ and $V_{max}$ values were 1.18 mg/ml and 1,961 ${\mu}mol$/mg/min, respectively. XYN7C also had substrate specificity towards various xylans, and was highly resistant to neutral proteases. The main hydrolysis products of xylans were xylose and xylobiose. These properties make XYN7C a promising candidate to be used in biobleaching, baking, and cotton scouring processes.

Transformation Conditions and Ampicillin-resistant Expression of E. coli Ts-mutant (온도감수성 대장균의 형질전환조건 및 Ampicillin 내성의 표현)

  • JIN Deuk Hee;HONG Yong Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 1987
  • The transformational conditions of plasmids $pPL-\lambda$ and pAS 1 are as follows in E. coli, Ts-mutant M 5248 strain at $30^{\circ}C$. When the culture time was 2.5 hours of mid logarithemic phase, the cell concentration was $4.5\times10^7\;cells/ml$, the optical density was equal to 0.45 at 590 nm wave length, the transformational frequencies of plasmid$pPL-\lambda$ and pAS 1 had the highest values as $2\times10^{-6}\;and\;1.5\times10^{-6}\;and\;1.5\times10^{-6}$ and respectively. For $9\times10^6$ competent cells in $200{\mu}l$, the transformational frequency was as high as $4.4\times10^{-6}$ at 510 ng plasmid concentration. The competent cells treated with the mixture of calcium chloride and thymidine twice rates of transformation than those treated with calcium chloride. The ampicillin resistance of transformants was expressed in LB broth after 2 hours at $30^{\circ}C$.

  • PDF

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Amount of Telomeric DNA on Lymphocytes in Senescence Mouse by Quantitative Fluorescence in situ Hybridization (노화촉진마우스의 텔로미어 함량 분석)

  • Lee, Mi-Rang;Do, Kyoung-Tag;Han, Jyung-Ju;Moon, So-Hyun;Kang, Han-Seok;Kim, Seon-Ku;Shin, Teak-Soon;Lee, Hong-Goo;Hwang, Dae-Yon;Kim, Yong-Gyun;Sohn, Sea-Hwan;Choi, Na-Eun;Kim, Byeong-Woo;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1463-1467
    • /
    • 2009
  • Telomeres, comprised of tandem repeats of TTAGGG sequences, are special nucleoprotein structures that protect and stabilize chromosome ends. These structures form the crux of the telomere concept of aging, senescence and genomic instability. The classic terminal restriction fragment (TRF) analysis to quantify the amount of telomeric DNA is disadvantageous in species containing ultra long telomeres like in mice (100Kb). In this study, we used a more sensitive quantitative fluorescence in situ hybridization (Q FISH) technique to quantify telomeric DNA, and used it as a biological aging marker in mice. 12 litters each of Senescence-Resistant (SAMR1) and -Prone (SAMP1) known as senescence accelerated mouse strains were purchased from Central Lab, Animal Inc. We quantified the amount of telomeric DNA using telomere specific DNA probes on the two strains of male mice at 8 weeks, 18 weeks and 26 weeks of age. The amount of telomeric DNA correlated with aging and age associated changes in body and organ weight between SAMR1 and SAMP1 strains of mice. These data suggest the usefulness of the amount of telomeric DNA as a biological aging marker in human aging studies.

The Effect of Newly Synthesized Compounds on the Photosynthetic Electron Transport of Cyanobacteria (Anacystis nidulans $R_2$) (신규(新規) 합성화합물들이 cyanobacteria의 광합성전자전달계에 미치는 영향)

  • Hwang, I.T.;Kim, J.S.;Cho, K.Y.;Yoneyama, K.;Yoshida, S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 1993
  • The Inhibiting activity of newly synthesized phenol (E-series) and triazine (T-series) derivatives was evaluated by using thylakoid membranes extracted from cyanobacteria (Anacystis nidulans $R_2$). There were no significant differences between phenol derivatives and dinoseb to the thylakoid membrane extracted from wild type in the Hill reaction. However, a phenol derivative, E-24 which has no -Cl at phenyl ring, did not show any activity. The longer the length of R substituents was in phenol derivatives, the lower inhibiting activity was in the Hill reaction. Triazine derivatives, T-27, T-28, T-40, T-41, T-47 and T-48 were also compared with diuron and atrazine. Among triazine compounds, T-27 and T-28 showed 10 and 30 times activity as high as atrazine to wild type, respectively. Other triazine derivatives, T-40, T-41, T-47 and T-48 showed low inhibiting activity to wild and mutant type. A structural difference of T-27 and T-28 from T-40, T-41, T-47 and T-48 was the presented of -C-NH-. Both T-27 and T-28 were very closely associated with serine, an amino acid located at the 264th position of D1 protein because of the resistant ratio(R/S) to mutant G-264 were higher than that of atrazine.

  • PDF

Silage Productivity of Korean Improved and Introduced Maize Hybrids (국내 육성 및 수입 옥수수 품종의 사일리지 생산성)

  • Lee, S.S.;Yun, S.H.;Seo, J.M.;Yang, S.K.;Min, H.K.;Ryu, S.H.;Park, J.Y;Kim, S.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.323-334
    • /
    • 2004
  • Silage yield Potential and some agronomic characteristics of Korean improved and introduced corn hybrids from the United States were tested for five year in Gyeongsan, Gyeongsangbug-do and for one year in Hongcheon, Gangwon-do. 1. At 20 days after emergence, plant height and dry matter of hybrids were different, while the early growth of the hybrids was not correlated to the culm length and silage yield. 2. In Cyeongsan, silage yield potential of Suwon19 was relatively high, while most susceptible to rice black-streaked dwarf virus (RBSDV) disease and leaf senescence at harvest time. In contrast, silage yield potential and resistance to RBSDV of Cwanganok were moderate, while susceptible to leaf senescence at harvest. Generally, Suwon19 showed similar or higher yield than most introduced hybrids, while some introduced hybrids showed lower silage yield than Korean improved hybrids. Most introduced hybrids were more resistant to RBSDV and leaf senescence at harvest time compared to Korean improved hybrids. 3. In Hongcheon, silage yield of three Korean improved hybrids were lower than that of NC+5514 and DK729, while similar or higher than other introduced hybrids. af senescence of all Korean hybrids was severer compared to introduced hybrids.

Construction of Pseudoalteromonas - Escherichia coli shuttle vector based on a small plasmid from the marine organism Pseudoalteromonas (극지해양 Pseudoalteromonas 유래의 소형 플라스미드에 기반한 Pseudoalteromonas - Escherichia coli 셔틀벡터 제작)

  • Kim, Dockyu;Park, Ha Ju;Park, Hyun
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • A small plasmid (pDK4) from the Antarctic marine organism Pseudoalteromonas sp. PAMC 21150, was purified, sequenced and analyzed. pDK4 was determined to be 3,480 bp in length with a G+C content of 41.64% and contains three open reading frames encoding a replication initiation protein (RepA), a conjugative mobilization protein (Mob) and a hypothetical protein. PCR-amplified pDK4 was cloned in high-copy pUC19 to yield the fusion vector pDOC153. The chloramphenicol resistance gene was inserted into pDOC153 to give an ampicillin and chloramphenicol-resistant, Pseudoalteromonas - Escherichia coli shuttle vector (7,216 bp; pDOC155). The TonB-dependent receptor (chi22718_IV ) and exochitinase (chi22718_III ) genes from Arctic marine P. issachenkonii PAMC 22718 were cloned into pDOC155 to produce pDOC158 and pDOC165, respectively. Both vector derivatives were transferred into plasmid-free Pseudoalteromonas sp. PAMC 22137 by the triparental mating method. PCR experiments showed that the genes were stably maintained both in Pseudoalteromonas sp. PAMC 22137 and E. coli $DH5{\alpha}$ cells, indicating the potential use of pDOC155 as a new gene transfer system into marine Pseudoalteromonas spp.

Agronomic Characteristics of Transgenic Japonica Rice 'Milyang 204' with Herbicide Resistance Gene (bar) (형질전환 제초제저항성 벼 밀양 204호의 농업적 특성)

  • Jeong Eung-Gi;Yi Gi-Hwan;Won Yong-Jea;Park Hyang-Mi;Cheon Nam-Soo;Choi Jun-Ho;Ku Yeon-Chung;Han Chang-Deok;Eun Mu-Yeong;Kim Tae-Sas;Nam Min-Hee
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.85-90
    • /
    • 2005
  • This study was conducted to investigated the major characteristics of genetically modified rice of 'Milyang 204' originated from Dongjinbyeo compared to a non-transgenic rice varieties Dongjinbyeo and Jun-ambyeo. Basta resistant transgenic rice lines carrying bar gene produced by the Yeongnam Agricultural Research Institute were evaluated for their agronomic characters. The transgenic Japonica rice of 'Milyang 204' showed inferior phenotypic traits compared to a non-transgenic rice variety Dongjinbyeo and Junambyeo. On the basis of UPOV (Union Internationale Pour la Protaection des Obtentions Vegetables) and NSMO(National Seed Management Office) the transgenic 'Milyang 204' showed difference in some traits out of some agronomic traits, such as leaf color, angle of flag leaf, number of spikelets, culm length, white core and white belly compared to the non-transgenic varieties rice.

Evaluation for Deformability of RC Members Failing in Bond after Flexural Yielding (휨항복 후 부착파괴하는 철근콘크리트 부재의 부착 연성 평가)

  • Choi, Han-Byeol;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • A general earthquake resistant design philosophy of ductile frame buildings allows beams to form plastic hinges adjacent to beam-column connections. In order to carry out this design philosophy, the ultimate bond or shear strength of the beam should be greater than the flexural yielding force and should not degrade before reaching its required ductility. The behavior of RC members dominated by bond or shear action reveals a dramatic reduction of energy dissipation in the hysteretic response due to the severe pinching effects. In this study, a method was proposed to predict the deformability of reinforced concrete members with short-span-to-depth-ratios, which would result in bond failure after flexural yielding. Repeated or cyclic loading produces a progressive deterioration of bond that may lead to failure at lower cyclic bond stress levels. Accumulation of bond damage is caused by the propagation of micro-cracks and progressive crushing of concrete in front of the lugs. The proposed method takes into account bond deterioration due to the degradation of concrete in the post yield range. In order to verify bond deformability of the proposed method, the predicted results were compared with the experimental results of RC members reported in the technical literature. Comparisons between the observed and calculated bond deformability of the tested RC members showed reasonably good agreement.