• Title/Summary/Keyword: Resistant Genes

Search Result 852, Processing Time 0.025 seconds

Transfer of foreign Genes into the Bradyrhizobium japonicum and their Inoculation Effects on Soybean Plants (Bradyrhizobium japonicum에 외부유전자(外部遺傳子)의 도입(導入)과 대두(大豆)에 대한 접종효과)

  • Kim, Yong-Woong;Kim, Kil-Yong;Rhee, Young-Hwan;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 1992
  • The fate of inoculum strain of Bradyrhizobium japonicum was studied by using genetically marked strain. RJB6 $str^rnal^rneo^r$. A spontaneous mutant of B. japonicum isolated from nodules was made to have antibiotic resistance against streptomycin and nalidixic acid. In order to make genetically marked strain, neomycine resistant gene(Tn5) was introduced into this spontaneous mutant by conjugation with E. coli containing pSUP2021. The southern hybridization was carried out to confirm the plasmid insertion. Hybridization of chromosome DNA using pSUP2021(Tn5) as a probe showed that Tn5 was located on the 4.9kb fragment of chromosome. Soybean seeds were planted into a soil previously cultivated with soybean and inoculated with different cell densities of marked strain. Fourty days after planting, the inoculation effects on nodule number, nodule fresh weight, plant height and nitrogen content in the plot inoculated with heavy cell suspension was a little better than those in the plot with low inoculation. The recovery percentage of the marked strains was about 12% in the plot inoculated with heavy density cell suspension, while 5% in the plot inoculated with low cell suspension.

  • PDF

Isolation of Mutants Susceptible to Rice Blast from DEB-treated Rice Population (DEB 처리에 의해 유도된 벼 돌연변이 집단으로부터 도열병 감수성 돌연변이 분리)

  • Kim, Hye-Kyung;Lee, Sang-Kyu;Han, Mu-Ho;Jeon, Yong-Hee;Lee, Gi-Hwan;Lee, Youn-Hyung;Bhoo, Seong-Hee;Hahn, Tae-Ryong;Jeon, Jong-Seong
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.339-344
    • /
    • 2005
  • Rice blast, which is caused by the fungus Magnaporthe grisea, is one of the most destructive diseases of rice. To identify genes involving in the signal transduction pathways that mediate rice blast resistance, we screened over 2,000 mutant lines of a highly resistant variety RIL260 that were generated by using a DEB (1, 3-Butadiene diepoxide) treatment method. In the mutant population, the frequency of albino plants was 6.7%, indicating that this population has a high frequency of mutations in the genome. The primary screening identified 29 mutant plants that exhibit a complete or partial loss of the resistance to rice blast. Among them, M5465, the most susceptible line, was subsequently examined by DNA gel-blot experiments using DNA molecular markers of Pi5(t) that has been previously identified as a durable resistance locus in RIL260. The result revealed that a large deletion and rearrangement of genomic DNA occurred in the Pi5(t) locus. The results suggest that DEB can be used as an efficient mutagen to induce large scale mutations in the rice genome. The isolated mutants should be useful for elucidating the Pi5(t)-mediated signaling pathways of rice blast resistance.

Impact of Virus-resistant Trigonal Cactus Cultivation on Soil Microbial Community (바이러스저항성 삼각주 재배가 토양 미생물상에 미치는 영향)

  • Oh, Sung-Dug;Kim, Jong-Bum;Lee, Jung-Jin;Kim, Min-Kyeong;Ahn, Byung-Ohg;Sohn, Soo-In;Park, Jong-Sug;Ryu, Tae-Hun;Cho, Hyun-Suk;Lee, Kijong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.148-154
    • /
    • 2013
  • BACKGROUND: Genetically modified(GM) trigonal cactus(Hylocereus trigonus Saff.) contained a coat protein gene of cactus virus X (CVX), which conferred resistance to the virus, phosphinothricin acetyltransferase (bar) gene, which conferred herbicide resistance, and a cauliflower mosaic virus 35S promoter (CaMV 35S). This study was conducted to evaluate the possible impact of GM trigonal cactus cultivation on the soil microbial community. METHODS AND RESULTS: Microorganisms were isolated from the rhizosphere of GM and non-GM trigonal cactus cultivation soils. The total numbers of bacteria, and actinomycete in the rhizosphere soils cultivated GM and non-GM trigonal cactus were similar to each other, and there was no significant difference. Dominant bacterial phyla in the rhizosphere soils cultivated with GM and non-GM trigonal cactus were Proteobacteria, Uncultured archaeon, and Uncultured bacterium. The denaturing gradient gel electrophoresis (DGGE) profiles show a similar patterns, significant difference was not observed in each other. DNA was isolated from soil cultivated GM and non-GM trigonal cactus, we analyzed the persistence of the inserted gene by PCR. Amplification of the inserted genes was not observed in the soil DNA, which was collected after harvest. CONCLUSION(S): This result suggests that the GM trigonal cactus cultivation does not change significantly the microbial community.

Changes in Korean Consumer's Perception and Attitudes toward Genetically-modified Foods (우리나라 국민의 유전자재조합식품에 대한 인지도 및 수용도 변화)

  • Kwon, Sun-Hyang;Chung, In-Shick;Choi, Mee-Kyung;Chae, Kyung-Yun;Kyung, Kyu-Hang
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.182-190
    • /
    • 2008
  • A survey on consumer's awareness and perception toward genetically-modified(GM) foods was conducted on 2110 random samples of Korean consumers. More than 65% of the respondents were exposed to some information related to GM foods. The respondents answered that the greatest benefit of the development of GM foods is remedy of potential food shortages in the future. More than 90% of Korean consumers wanted GM foods to be labeled as such. More than 50% of the respondents would not buy until they know more about GM foods. Only 35.8% of Korean consumers were found to know that food items originating from plants contained genes. More consumers responded that they would not buy herbicide-resistant GM soybean but buy vitamin-enriched GM soybean. Many Korean consumers' decision of acceptance or rejection of GM foods depend not on the basis of biotechnology, but on the basis of the degree of benefit to the consumers. Only 6.4% of Korean consumers responded that GM foods were the greatest threat to the safety of Korean foods. The perception of Korean consumers on GM foods has not changed significantly during the past 5 years.

Production of Transgenic Plants in Brassica napus Winter Cultivar 'Youngsan' (영산 유채를 이용한 형질전환체 생산)

  • Roh, Kyung-Hee;Kwak, Bo-Kyoung;Kim, Hyun-Uk;Lee, Kyeong-Ryeol;Kim, Sun-Hee;Suh, Mi-Chung;Kim, Hyo-Jin;Kim, Jong-Beom
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • To improve genetic transformation of Brassica napus winter cultivar 'Youngsan', factors influencing shoot regeneration and transformation from cotyledonary petioles were investigated. Shoot induction was enhanced in the combination of 0.5 mg/L NAA and 2~4 mg/L kinetin. Silver nitrate was essential for successful shoot regeneration, ranging from 5 to 9 mg/L. The addition of $GA_3$ promoted plant regeneration. Among the tested Agrobacterium strains, co-cultivation times, and antibiotic selection regimes, choice of appropriate Agrobacterium strain was the most critical factor for efficient transformation of B. napus cv. 'Youngsan'. The EHA105 succinamopine strain was the most efficient and the maximum transformation efficiency was 26.8%. Transgenic shoots were selected on 10 mg/L phosphinothricin (PPT) containing media. The transgenic plants expressing bar and gus genes were resistant for commercial herbicide "Basta" and stained with X-Gluc. Southern blot hybridization indicated that the presence of one to three gus gene copies per genome and inheritance of the gus gene into the $T_1$ generation.

Inheritance of Insecticide Resistance to Plant- and Leaf-hoppers Inherited Properties of MEP Resistance to Small Brown Plant-hopper (Laodelphax striatellus Fallen) (멸구 매미충류에 대한 약제저항성의 유전성에 관한 연구 I. 애멸구의 MEP제에 대한 약제저항성의 유전적 특성)

  • Shim Jai Wook
    • Korean journal of applied entomology
    • /
    • v.17 no.2 s.35
    • /
    • pp.75-80
    • /
    • 1978
  • The study was conducted to determine the inherited properties of the MEB resistance to natural population of the small brown plant-hopper(Laodelphax striatelluss). The plant-hoppers were collected from the natural population of Naju area where the highest insecticide resistance of MEF to the green rice leaf hopper (Nephotettix cincticeps) have been examined in 1976. And Naju collections were crossed to the susceptible Lab stock to examine the MEP resistance in the $F_1,\;BC_1F_1\;and\;F_2$ and $F_2$ populations. Ail the data were analyzed by the probit method. There was a difference in MEP resistance between Naju collection and susceptible Lab stock, showing $LD_{50}$ value of the former was 0.0029ug/insect compared to 0.0008ug/insect for the later. The $LD_{50}$ values and dosage-mortality lines of the $F_1$ and $BC_1F_1$ tended to close their resistant parent. and it was considered that the character of the MEP resistance in the Naju collection of the small brown plant hopper was controlled by the genetic traits. However, $LD_{50}$ value and dosasage-mortality lines of the $F_2$ populations were intermediate to their parents, it would be conclusive that the trait will be governed by a interaction of the genes or factors rather than the single genic control.

  • PDF

Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

  • Jung, Yuchae;Park, Heejoo;Zhao, Hui-Yuan;Jeon, Raok;Ryu, Jae-Ha;Kim, Woo-Young
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.547-553
    • /
    • 2014
  • Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and $TGF{\beta}$ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

Evaluation of horizontal gene transfer from genetically modified zoysiagrass to the indigenous microorganisms in isolated GMO field (GMO 격리포장에서의 유전자변형 들잔디로부터 토착미생물로의 수평유전자전달 평가)

  • Bae, Tae-Wung;Lee, Hyo-Yeon;Ryu, Ki-Hyun;Lee, Tae-Hyeong;Lim, Pyung-Ok;Yoon, Pill-Yong;Park, Sin-Young;Riu, Key-Zung;Song, Pill-Soon;Lee, Yong-Eok
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.75-80
    • /
    • 2007
  • The release of genetically modified organisms ($GMO_{s}$) into the environment has the potential risks regarding the possibility of gene transfer from $GMO_{s}$ to natural organisms and this needs to be evaluated. This study was conducted to monitor the possible horizontal gene transfer from herbicide-resistant zoysiagrass (Zoysia japonica Steud.) to indigenous microorganisms. We have first examined the effect of field-released GM zoysiagrass on the microbial flora in the gut of locust (Locusts mlgratoria). The microbial flora was analyzed through determining the 165 rDHA sequences of microorganisms. The comparison of the microbial flora in the gut of locusts that were captured at the field of GM zoysiagrass and of wild-type revealed that there is no noticeable difference between these two groups. This result indicates that the GM zoysiagrass does not have negative impact on microbial flora in the gut of locust. We then investigated whether the horizontal gene transfer occurred from GM zoysiagrass to microbes in soil, rhizosphere and faecal pellets from locusts by utilizing molecular tools such as Southern hybridization and polymerase chain reaction (PCR). When the total DNAs isolated from microbes in GM zoysiagrass and in wild-type zoysiagrass fields were hybridized with probes for bar or hpt gene, no hybridization signal was detected from both field isolates, while the probes were hybridized with DNA from the positive control. Absence of these genes in the FNAs of soil microorganisms as well as microbes in the gut of locust was further confirmed by PCR. Taken together, our data showed that horizontal gene transfer did not occur in this system. These results further indicate that frequencies of transfer of engineered plant DNA to bacteria are likely to be negligible.

Association Between Single Nucleotide Polymorphisms in miRNA196a-2 and miRNA146a and Susceptibility to Hepatocellular Carcinoma in a Chinese Population

  • Zhang, Jun;Wang, Rui;Ma, Yan-Yun;Chen, Lin-Qi;Jin, Bo-Han;Yu, Hua;Wang, Jiu-Cun;Gao, Chun-Fang;Liu, Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6427-6431
    • /
    • 2013
  • Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the world and deeply threatens people's health, especially in China. Techniques of early diagnosis, prevention and prediction are still being discovered, among which the approaches based on single nucleotide polymorphisms in microRNA genes (miRNA SNPs) are newly proposed and show prospective potential. In particular, the association between SNPs in miRNA196a-2 (rs11614913) and miRNA146a (rs2910164) and HCC has been investigated. However, the conclusions made were conflicting, possibly due to insufficient sample size or population stratification. Further confirmations in well-designed large samples are still required. In this study, we verified the association between these two SNPs and the susceptibility to HCC by MassARRAY assay in a 2,000 large Chinese case-control sample. Significant association between rs11614913 and HCC was confirmed. Subjects with the genotype of CT+TT or T allele in rs11614913 were more resistant to HCC (CT+TT: OR (95% CI)=0.73 (0.57-0.92), P=0.01; T allele: OR (95% CI)=0.85 (0.75-0.97), P=0.02) and HBV-related HCC (CT+TT: OR (95% CI)=0.69 (0.53-0.90), P=0.01; T allele: OR (95% CI)=0.82 (0.71-0.95), P=0.01). The affected carriers of CT or TT also tended to have lower levels of serum AFP (P=0.01). This study demonstrated a role of rs11614913 in the etiology of HCC. Further research should focus on the clinical use of this miRNA SNP, so as to facilitate conquering HCC.

Screening of Tomato Spotted Wilt Virus Resistance in Tomato Accessions (토마토반점위조바이러스(TSWV) 저항성 토마토 유전자원 탐색)

  • Han, Jung-Heon;Choi, Hak-Soon;Lee, Jun-Dae;Kim, Jae-Deok;Lee, Won-Phil;Choi, Hong-Soo;Kim, Jung-Soo;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.30 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • A total of 94 tomato accessions were evaluated for the resistance to $Tomato$ $spotted$ $wilt$ $virus$ (TSWV) using a Sw5-2 SCAR marker and bioassay. PCR products of the marker were approximately 574 bp, 500 bp, and 462 bp, among which the longest was linked to TSWV resistance allele of Sw5-b. This allele was only found in three accessions (09-438, 10-318, and 10-321) in which some individuals showed apparent recovery or stem necrosis symptom to a tomato isolate of TSWV-pb1. Thirty-five individuals (one per each accession) which were non-infected by ELISA were selected for further observation. Among these, 26 individuals that did not show any symptom at 5 months after inoculation were confirmed for viral infection by RT-PCR. TSWV-specific PCR amplicon was weakly detected in all 26 individuals including 'Eureta', a commercial F1 possessing the resistance allele of Sw5-b. The resistant genes in the selected individuals may play an important role for reducing the viral concentration in tissues of inoculated tomato plants and seems to be quantitatively controlled by several factors including Sw5-b gene.