• Title/Summary/Keyword: Resistance-capacitance

Search Result 459, Processing Time 0.026 seconds

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Electric Circuits Modeling of Magnetoelectric Bulk Composites in Low Frequency (ME 소자의 저주파 등가회로 모델링)

  • Chung, Su-Tae;Ryu, Ji-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.515-521
    • /
    • 2013
  • Magnetoelectric(ME) bulk composites with PZT-PNN-PZN/$Fe_2O_4$ were prepared by using a conventional ceramic methods and investigated on the ME voltage vs frequency of ac magnetic fields. We made the electric equivalent circuits by using the Maxwell-Wagner model and simulated the frequency dependence of ME voltage in low frequency region. ME devices were described by a series of two equivalent circuits of piezoelectric and magnetic, which have the relaxation time ${\tau}$ due to the interaction between ME device and load resistor. Equivalent circuit of piezoelectric material is independent of frequency. However ferrite magnetic materials have Debye absorption and dipolar dispersion, whose equivalent circuit is a function of frequency. Therefore we suggest the resistance in the equivalent circuit is proportion to $1+{\omega}^2{\tau}^2$ and the capacitance is in inverse proportion to $1+{\omega}^2{\tau}^2$ in the magnetic materials.

Impedance spectroscopy analysis of organic light emitting diodes with the $O_2$ anode plasma treatment (저압 산소 플라즈마 처리된 ITO박막을 이용한 유기 EL 소자의 성능 향상에 관한 임피던스 분석)

  • Kim, Hyun-Min;Park, Hyung-June;Lee, Jun-Sin;Oh, Se-Myoung;Jung, Dong-Ggeun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.436-437
    • /
    • 2006
  • In this work, impedance Spectroscopic analysis was applied to study the effect of plasma treatment on the surface of indum-tin oxide (ITO) anodes using $O_2$ gas and to model the equivalent circuit for organic light emitting diodes (OLEDs) with the $O_2$ plasma treatment of ITO surface at the anodes. This device with ITO/TPD/Alq3/LiF/Al structure can be modeled as a simple combination of a resistor and a capacitor. The $O_2$ plasma treatment on the surface of ITO shifts the vacuum level of the ITO as a result of which the barrier height for hole injection at the ITO/organic interface is reduced. The impedance spectroscopy measurement of the devices with the $O_2$ plasma treatment on the surface of ITO anodes shows change of values in parallel resistance ($R_p$) and parallel capacitance ($C_p$).

  • PDF

A Study on the Fabrication of Laser-Induced Graphene Humidity Sensor for Mounting on a Disposable Mask (일회용 마스크에 장착을 위한 레이저 기반 그래핀 습도센서 제작에 관한 연구)

  • Lee, Jun-Uk;Shin, Yun-Ji;Yang, Hye-Jeong;Shin, Bo-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.693-699
    • /
    • 2020
  • 355nm UV pulse laser is irradiated on the surface of polyimide (PI) by LDW (Laser Direct Writing) method to produce a high sensitivity flexible humidity sensor using a simple one-step process. The LDW method continuously investigates 2-D CAD data using a galvano scanner and an F-lens. This method is non-contact, so it minimizes physical strain on the PI. Laser-induced graphene (LIG) produced by lasers has a high surface area due to its high flexibility and numerous pores and oxidizers compared to conductors. For this reason, it is highly useful as a flexible humidity sensor. The humidity sensor produced in this study was attached to the inside of a mask filter, which has become a hot topic recently, and its applicability was confirmed.The measurement of humidity measured the sensitivity, reactivity, stability and recovery behavior of the sensor by measuring changes in capacitance and resistance.

Effect of pore structure on electrochemical performance of EDLC (EDLC의 전기화학적 성능에 대한 메조기공 구조의 효과)

  • Lee, Myung-Suk;Shin, Yun-Sung;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.310-317
    • /
    • 2010
  • The electrochemical properties of electric double layer capacitor(EDLC) was studied by controlling pore size distribution and specific surface area of the activated carbon fiber(ACF). The mesoporous ACF, which was prepared by the iron exchange method, showed the tendency of increasing average pore size and decreasing total surface area. The mesoporous ACF (surface area = 2225 $m^2$/g, pore size=1.93 nm) showed increased mesopore(pore size=1~3nm) volume from 0.055 cc/g to 0.408 cc/g compared to its raw ACF. The charging capacity of the EDLC which uses the prepared mesoporous ACF also increased from 0.39 F/$cm^2$ to 0.55 F/$cm^2$. From these results, it can be known that the electrochemical properties of EDLC are mainly dependent on the specific surface area, but above the surface area 2200 $m^2$/g, it is the mesopore volume that affects the performance of the capacitor considerably. Because the increased mesopore volume results in a decreased ion mobility resistance, the charge capacitance is enhanced.

Preparation of Pseudotetragonal $ZrO_{0.75}S$ and Its Electric Responses on Temperature and Frequency Related to Microstructural Relaxation

  • Ro, Yeong A;Kim, Seong Jin;Lee, Yu Gyeong;Kim, Ja Hyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1231-1235
    • /
    • 2001
  • Pseudotetragonal ZrO0.75S whose space group is P212121 was synthesized and the cell dimensions were a=5.110(2) $\AA$, b=5.110(7) $\AA$, and c=5.198(8) $\AA.$ The space group P212121 seems to be resulted from lowering the symmetry of cubic ZrOS structure with P213 space group by lattice distortion due to the oxygen defects. In the distorted structure, bond shortening between metal-nonmetal by reduction of cell volume and alternation of Zr-Zr distance were observed. Dielectric constant and loss data of the bulk material in temperature range -170 to 20 $^{\circ}C$ and frequency range 50 Hz to 1 MHz showed that there was dielectric transition at around -70 $^{\circ}C$ originated from the relaxation of Zr-S segment. Comparing with ZrO2 exhibited the dielectirc constants, 9.0 at room temperature, ZrO0.75S showed high dielectric constant, k = 200.2 at 100 kHz. The activation energy of relaxation time due to dielectric relaxation of Zr-S was 0.47 eV (11.3 kcal/mole). According to the impedance spectra, ZrO0.75S showed more parallel circuit character between the resistance and capacitance components at the temperature (-70 $^{\circ}C)$ that the Zr-S dielectric relaxation was observed.

Study on the Simulation of Heat Pump Heating and Cooling Systems to Resident Building (숙박업소 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구)

  • Choi, Young-Don;Han, Seong-Ho;Cho, Sung-Hwan;Kim, Du-Sung;Um, Chul-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, such as ground source, river water, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large resident building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing of sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.

High Temperature Supercapacitor with Free Standing Quasi-solid Composite Electrolytes (독립형 반고체 복합 전해질을 적용한 고온 수퍼커패시터)

  • Kim, Dong Won;Jung, Hyunyoung
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.121-128
    • /
    • 2019
  • Supercapacitors are attracting much attention in sensor, military and space applications due to their excellent thermal stability and non-explosion. The ionic liquid is more thermally stable than other electrolytes and can be used as a high temperature electrolyte, but it is not easy to realize a high temperature energy device because the separator shrinks at high temperature. Here, we report a study on electrochemical supercapacitors using a composite electrolyte film that does not require a separator. The composite electrolyte is composed of thermoplastic polyurethane, ionic liquid and fumed silica nanoparticles, and it acts as a separator as well as an electrolyte. The silica nanoparticles at the optimum mass concentration of 4wt% increase the ionic conductivity of the composite electrolyte and shows a low interfacial resistance. The 5 wt% polyurethane in the composite electrolyte exhibits excellent electrochemical properties. At $175^{\circ}C$, the capacitance of the supercapacitor using our free standing composite electrolyte is 220 F/g, which is 25 times higher than that at room temperature. This study has many potential applications in the electrolyte of next generation energy storage devices.

Effect of Hydrogen in Rapid Thermal Annealing on the Graphene-Zinc Oxide Electrode for Supercapacitor (슈퍼커패시터용 그래핀-산화아연 전극의 급속열처리에서 수소의 영향)

  • Jeong, Woo-Jun;Oh, Ye-Chan;Kim, Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.123-129
    • /
    • 2019
  • With recent demand for the renewable energy resources, we conducted a research on the energy conversion and storage device of supercapacitor. The hybrid graphene-zinc oxide(GZO) electrodes for the supercapacitors (SCs) were fabricated and investigated. To increase the electrical conductivity of the GZO electrode, the rapid thermal annealing(RTA) in $Ar/H_2$(10%) atmosphere was applied and the effect was examined by comparing it with RTA at Ar atmosphere. In Raman spectroscopy, the electrodes annealed at 400? in $Ar/H_2$ atmosphere showed a lower ratio of D/G peak than that of annealed at Ar atmosphere, and had a larger specific capacitance(Sc) in the cyclic voltammetry(CV), and a lower the equivalent series resistance(ESR) in the electrochemical impedance spectroscopy(EIS). The reason seems to come from the better mixing of the graphene and zinc oxide by the RTA in $Ar/H_2$(10%).