• Title/Summary/Keyword: Resistance-area product

Search Result 40, Processing Time 0.034 seconds

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.

An Exploratory Study on the Acceptance Factors of the Innovative Technology in Area of Information Technology (정보기술 분야에서 혁신적인 기술의 수용요인에 관한 탐색적 연구)

  • Choi, Young-Jin;Ra, Jong-Hei;Jung, Yong-Kyu
    • Korean Management Science Review
    • /
    • v.28 no.3
    • /
    • pp.113-124
    • /
    • 2011
  • Today, change in the information technology field is very fast, the innovative technology or product to be released for the other sectors tend more frequent. In this situation, most of potential users should think carefully about the adoption of innovative technology such as Web2.0. On the other hand, the adoption or acceptance of innovative technology has the paradox of technology. In order to verify the acceptance factors of innovative technology, we are proposed the model based on the DOI and MIR. Conceptually, we examine the four independent variables such as relative benefit, compatibility, complexity, risk that are divided into two parts as positive and negative, a moderating variable effect on independent variables that is the social influence, and their impacts on the acceptance of new technology. The questionnaire which consists of 100 questions was used to analyze the result to IT suppliers and customers in public sector. Finally, our research model was tested in an empirical study, which confirmed all of our hypotheses.

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin;Kang, Choon-Hyoung;Chung, Chang-Bock;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.

Seismic performance of RC bridge piers reinforced with varying yield strength steel

  • Su, Junsheng;Dhakal, Rajesh Prasad;Wang, Junjie;Wang, Wenbiao
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This paper experimentally investigates the effect of yield strength of reinforcing bars and stirrups on the seismic performance of reinforced concrete (RC) circular piers. Reversed cyclic loading tests of nine-large scale specimens with longitudinal and transverse reinforcement of different yield strengths (varying between HRB335, HRB500E and HRB600 rebars) were conducted. The test parameters include the yield strength and amount of longitudinal and transverse reinforcement. The results indicate that the adoption of high-strength steel (HSS) reinforcement HRB500E and HRB600 (to replace HRB335) as longitudinal bars without reducing the steel area (i.e., equal volume replacement) is found to increase the moment resistance (as expected) and the total deformation capacity while reducing the residual displacement, ductility and energy dissipation capacity to some extent. Higher strength stirrups enhance the ductility and energy dissipation capacity of RC bridge piers. While the product of steel yield strength and reinforcement ratio ($f_y{\rho}_s$) is kept constant (i.e., equal strength replacement), the piers with higher yield strength longitudinal bars are found to achieve as good seismic performance as when lower strength bars are used. When higher yield strength transverse reinforcement is to be used to maintain equal strength, reducing bar diameter is found to be a better approach than increasing the tie spacing.

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

The Effects of the Ash Content in Flour on the Rheological Properties of Frozen Dough (밀가루의 회분 함량이 냉동 생지 반죽의 물성에 미치는 영향)

  • Kim, Seok-Young;Han, Jae-Heung;Song, Young;Lee, Si-Kyung
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • This study was conducted to investigate the effect of ash contents of bread flour on the rheology of frozen dough In making frozen dough by measuring amylograph, flrinograph and extensograph. The quality of frozen-stored dough under freezing condition ($-20^{\circ}C$, 12 weeks) was evaluated by measuring final proof time, moisture content, baking loss, loaf volume and hardness of bread with storage time. In bread flour with high ash content farinogram showed that water absorption, degree of softening increased but valorimeter value decreased. In bread flour with low ash content amylogram showed that gelatinization temperature and maximum viscosity increased and extensogram showed that the area and resistance of the bread flour increased. As the proof time increased the extensibility decreased. Final proof time of frozen dough was shortened at the bread flour with low ash content with storage time. In bread using the flour with high ash content, moisture content, increased but baking loss rate decreased while the hardness of product increased slowly with time. But in bread using the flour with low ash content, the loaf volume of baking increased but the hardness of product decreased. As the frozen storage time was shortened, the product was more stable and better in quality.

Lipid accumulation product is a predictor of nonalcoholic fatty liver disease in childhood obesity

  • Ozcabi, Bahar;Demirhan, Salih;Akyol, Mesut;Akay, Hatice Ozturkmen;Guven, Ayla
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.12
    • /
    • pp.450-455
    • /
    • 2019
  • Background: Lipid accumulation product (LAP) is associated with the presence and severity of nonalcoholic fatty liver disease (NAFLD) in adults. Purpose: Here we evaluated the ability of LAP to predict NAFLD in obese children. Methods: Eighty obese children (38 girls; age 6-18 years) were included. Anthropometric measurements and biochemical values were obtained from the patients' medical records. LAP was calculated as [waist circumference (WC) (cm) - 58]×triglycerides (mmol/L) in girls; [WC (cm) - 65]×triglycerides (mmol/L) in boys. The minLAP and adjLAP were described (3% and 50% of WC values, respectively) and the total/high-density lipoprotein cholesterol index (TC/HDL-C) was calculated. NAFLD was observed on ultrasound, and patients were divided into 3 groups by steatosis grade (normal, grade 0; mild, grade 1; moderate-severe, grade 2-3). The area under the curve (AUC) and appropriate index cutoff points were calculated by receiver operator characteristic analysis. Results: LAP was positively correlated with puberty stage (rho=0.409; P<0.001), fasting insulin (rho= 0.507; P<0.001), homeostasis model assessment of insulin resistance (rho=0.470; P<0.001), uric acid (rho=0.522; P<0.001), and TC/HDL-C (rho=0.494; P<0.001) and negatively correlated with HDL-C (rho=-3.833; P<0.001). LAP values could be used to diagnose hepatosteatosis (AUC=0.698; P=0.002). The LAP, adjLAP, and minLAP cutoff values were 42.7 (P=0.002), 40.05 (P=0.003), and 53.47 (P= 0.08), respectively. For LAP, the differences between the normal and mild groups (P=0.035) and the normal and moderate-severe groups were statistically significant (P=0.037), whereas the difference between the mild and moderate-severe groups was not (P>0.005). There was a statistically significant difference between the normal and mild groups for adjLAP (P=0.043) but not between the other groups (P>0.005). There was no significant intergroup difference in minLAP (P>0.005). Conclusion: LAP is a powerful and easy tool to predict NAFLD in childhood. If LAP is ≥42.7, NAFLD should be suspected. This is the first study to assess LAP diagnostic accuracy for childhood obesity.

Local Investigation and Magnetoresistance Properties of Co-Fe/Al-N/Co-Fe Tunnel Junctions Nitrided by Microwave-excited Plasma (질화법으로 제작한 강자성 터널링 접합의 국소전도 및 자기저항 특성)

  • Yoon Tae Sick;Tsunoda Masakiyo;Takahashi Migaku;Park Bum Chan;Lee Young-Woo;Li Ying;Kim Chong Oh
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.191-195
    • /
    • 2004
  • Tunnel junctions with AI-N barriers fabricated by microwave-excited plasma were studied. When the Al thickness, nitridation time, and annealing temperature were 1 nm (0.8 nm), 50 s (35 s), and $280^{\circ}C$ ($300^{\circ}C$), TMR ratio and resistance-area product (RA) were 49% (34%) and $3 ${\times}$ 10^4$ $\Omega$$\mu\m^2$ ($1.5 ${\times}$ 10^4$ $\Omega$$\mu\m^2$), respectively. In order to clarify the annealing temperature dependence of TMR ratio, the local transport properties were measured for Ta 5 nm/Cu 20 nm/Ta 5 nm$29_{76}$ $Fe_{24}$ 2 nm/Cu 5 nm/M $n_{75}$$Ir_{25}$ 10 nm/ $Co_{71}$ $Co_{29}$ 4nm/Al-N junction with Al thickness of 0.8 nm and nitridation time of 35s at various temperatures. The increase of TMR ratio after annealing at $300^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 34%, can be well explained by the enhancement of the average barrier height ($\Phi_{ave}$) and the reduction of its fluctuation. After further annealing at $340^{\circ}C$, the leakage current was observed and the TMR ratio decreaseded

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

A Study on Feed Rate Characteristics of Motor-driven Cylinder Lubricator with Electronic Control Quill in a Large Two-stroke Diesel Engine (대형 2행정 디젤기관에 있어서 전자제어 퀼 부착 모터구동 실린더 주유기의 송출유량 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa;Jung, Yeun-Hak;Kim, In-Deok;Kang, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-8
    • /
    • 2007
  • Minimizing the cylinder wear and the consumption rate of cylinder oil in a large two-stroke marine diesel engine is of great economic importance. In Korea, authors first developed a motor-driven cylinder lubricator for a Wartsila Switzerland large two-stroke diesel engine. The characteristic of the developed product is that can control automatically the oil feed rate with a load fluctuation by the motor drive and the offset cam. For manufacturing the reliable and useful products, however, it is necessary to investigate further characteristics and to improve performances as a cylinder lubricator. In this study, the effects of pump motor speed, plunger stroke and cylinder back pressure on oil feed rate, maximum discharge and delivery pressures are experimentally investigated by using the electronically controlled quill injection system and distributer in the developed cylinder lubricator. It is found that the oil feed rates of electronic control and mechanical type quills with the in-cylinder back pressure are differently characterized by the role of accumulator, the viscous resistance of contact area, etc. It can be also shown that the maximum discharge pressure of the electronic control quill is lower than the mechanical type one but the maximum discharge pressure difference of two types decreased as plunger stroke is small, and the maximum delivery pressures of two types increased as plunger stroke, motor speed and back pressure are elevated but the maximum delivery pressure of mechanical type is higher than the one of electronic control type.