• 제목/요약/키워드: Resistance to Surface Wetting

검색결과 32건 처리시간 0.024초

이미징 기반의 발수도 판별을 통한 측정 신뢰도 향상에 관한 연구 (A Study of Enhancing Reliability for Determining the Resistance to Surface Wetting by Imaging Process)

  • 김성욱;전상희;박재우
    • 한국산학기술학회논문지
    • /
    • 제18권7호
    • /
    • pp.483-489
    • /
    • 2017
  • 본 연구의 목적은 직물의 발수도 판정 (KS K 0590) 시 이미징 기반의 판별을 통해서 측정 신뢰도를 향상하는 것으로 한다. 이를 수행하기 위하여 가장 먼저 우리는 Java 기반의 이미지 처리 프로그램을 통해서 발수도 판정 표준표를 정량화하였다. 이때 모든 이미지의 처리과정은 미 국립보건원(NIH)에서 개발한 오픈 소프트웨어인 Image J를 사용하였다. 발수도 판정 표준표(standard spray test rating)에 대한 이미지 처리과정은 면적 측정 기법을 통해서 수행하였으며, 이를 통해서 정량화한 결과, 습윤 면적비 수치를 기반으로 하는 손쉬운 판정기준을 확보 할 수 있었다. 또한 실제 직물에 있어서 이미징 기반의 발수도 판정을 도입하기 위한 최적화 처리기법을 도출하기 위하여 형광물질을 사용하였다. 형광 이미지를 도입하여 문턱값 (Threshold) 조절과 2치이미지 (Binary Image) 변환 등의 과정을 통해서 발수도 판정을 위한 데이터 처리과정을 진행하였다. 본 연구의 결과물은 향후 직물의 발수도 판정 (KS K 0590)에 있어서 기존의 정성적인 분석법에서 탈피하여 정량적인 측정 신뢰도 향상을 위한 방안으로 적용할 수 있으리라 판단된다.

플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰 (An Experimental Study on the Rolling Resistance of Silver Coating Films Modified by Plasma Surface Treatments)

  • 양승호;공호성;윤의성;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.49-58
    • /
    • 1998
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver coated 52100 bearing steel. Plasma surface modifications were performed on the silver coated specimen to change the wetting characteristics. Experiments using a thrust ball beating-typed roiling test-rig were performed under vacuum, dry air and various tmmidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

  • PDF

플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰 (An Experimental Study on the Rolling Resistance of Silver-Coated Films Modified by Plasma Surface Treatments)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • 제15권4호
    • /
    • pp.321-327
    • /
    • 1999
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver-coated 52100 bearing steel. Plasma surface modifications were performed on the silver-coated specimen to change the wetting characteristics. Experiments using a thrust ball bearing-type rolling test-rig were performed under vacuum, dry air and various humidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

윤활액이 담지된 나노다공성 표면의 최신 응용분야 (Recent applications of lubricant-impregnated nanoporous surface : A Review)

  • 한경완;배기창;이정훈
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.1-11
    • /
    • 2023
  • Lubricant-impregnated nanoporous surfaces (LIS), which is created by impregnating water-immiscible oil into nanoporous surface structure, have been explored considering wide range of application fields. Due to the lubricant impregnated in nanoporous structure, the surface shows extreme de-wetting with a high mobility of water droplets, so that various functionalities can be realized. The lubricant layer inhibits the contact of corrosive media to porous structure as well as metal substrate, thus the surface improves the corrosion resistance. The water on the surface freeze without any contact to solid porous structure, showing a low ice adhesion for de-icing an anti-icing. The extremely high mobility of water droplets on lubricant-impregnated porous surfaces also contributes the enhancement of condensation heat transfer as well as water harvesting from fog and moisture. Moreover, the bacteria adhesion on metal surface forming biofilms causing serious hygiene issues can be inhibited on the lubricantimpregnated surfaces. Despite of such superior functionalities, the lubricant-impregnated porous surface has a limitation of lubricant depletion by external flow of fluids. Therefore, extensive efforts to improve the durability of lubricant-impregnated surface are required for practical applications.

나노 채널에서의 표면 거칠기와 경계 습윤의 효과 (Effects of Surface Roughness and Interface Wettability in a Nanochannel)

  • 추연식;서인수;이상환
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.5-11
    • /
    • 2010
  • The nanofluidics is characterized by a large surface-to-volume ratio, so that the surface properties strongly affect the flow resistance. We present here the results showing that the effect of wetting properties and the surface roughness may considerably reduce the friction of fluid past the boundaries. For a simple fluid flowing over hydrophilic and hydrophobic surfaces, the influences of surface roughness are investigated by the nonequilibrium molecular dynamics (NEMD) simulations. The fluid slip at near a solid surface highly depends on the wall-fluid interaction. For hydrophobic surfaces, apparent fluid slips are observed on smooth and rough surfaces. The solid wall is modeled as a rough atomic sinusoidal wall. The effects on the boundary condition of the roughness characteristics are given by the period and amplitude of the sinusoidal wall. It was found that the slip velocity for wetting conditions at interface decreases with increasing effects of surface roughness. The results show the surface rougheness and wettability determines the slip or no-slip boundary conditions. The surface roughness geometry shows significant effects on the boundary conditions at the interface.

Evaluation of ENEPIG Surface Treatment for High-reliability PCB in Mobile Module

  • Lee, Joon-Kyun;Yim, Young-Min;Seo, Jun-Ho
    • 한국표면공학회지
    • /
    • 제43권3호
    • /
    • pp.142-147
    • /
    • 2010
  • We evaluated characteristics of ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) surface treatment for mobile equipment that requires high reliability, in addition to investigating surface treatment processes for semiconductor boards that require high reliability such as regular PCB-package systems, board-on-chip, chip-scaled package (CSP), etc and application for semiconductor package board of SIP, BOC. As a result, it appeared that ENEPIG has superior properties compared to ENIG surface treatment in corrosion resistance, solder junction, wetting, etc. We anticipate that these results will be able to lend credibility to ENEPIG as a low-cost alternative for producing mobile devices such as the cell phones, especially when applied to mass production.

UV경화형 아크릴계 점착제의 박리 에너지 변화 (The Peel Energy Behavior of UV-Cured Acrylic PSAs)

  • 손희철;김호겸;이동호;민경은
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.313-321
    • /
    • 2008
  • UV개시에 의해 광경화형 아크릴 공중합체를 합성하고 제조된 아크릴 점착제(PSA)의 박리 에너지와 물리적 특성을 조사하였다. 이때 acrylic acid(AA)의 함량을 변화시켜 점착제의 물성을 변화시켰으며, 피착제의 표면 거칠기, 표면 요철방향, 점착제의 두께를 변화시킴으로써 박리 에너지의 변화 추이를 조사하였다. 공단량체인 acrylic acid의 함량이 증가함에 따라 표면 거칠기가 낮은 피착제가 높은 박리 에너지를 보였으며 점착제의 두께가 두꺼워 질수록 증가하였다. 또한 피착제 표면의 요철방향이 박리방향과 수평일 때 특히 높은 박리 에너지를 갖는 것으로 나타났다. 이것은 점착제의 두께 감소와 피착제 표면 거칠기의 증가가 wetting의 감소를 초래하지만 박리 시 저항력은 오히려 증가하는 경향을 나타내기 때문일 것이라는 예상과도 잘 일치한다.

Influence of the $CF_4$ Plasma Treatments on the Wettability of Polypropylene Fabrics

  • Kwon, Young-Ah
    • Fibers and Polymers
    • /
    • 제3권4호
    • /
    • pp.174-178
    • /
    • 2002
  • A plasma treatment using saturated $CF_4$ gas was employed to improve the resistance of polypropylene fabrics to water wetting. The fabrics were significantly fluorinated even within a short treatment time of 30 seconds. The result of contact angle measurement indicated that such highly hydrophobic surface was considerably durable even after 150 days of aging.

표면 젖음성을 이용한 물/오일 분리막 제작 (Fabrication of Stable Water/Oil Separation Filter Using Effect of Surface Wettability)

  • 김도형;안태창
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.213-217
    • /
    • 2016
  • The superhydrophobic and superoleophobic meshes surfaces have been used in various applications such as self-cleaning, anti-icing, gas exchange, oil-water separation, sound-wave penetrable anti-wetting structures, etc. In particular, there are many studies for oil-water separation with environmental issues. Because of high pressure and dynamic environment, oil-water separation filters must have stable surface properties as super-hydrophobicity and superoleophobicity. The oleophobicity of surface depends on the surface chemistry and roughness of the surface. The roughness of oleophobic surface enhances its static contact angle and stability. The multi-scale hierarchical structure provides a stable superhydrophobic state by maintaining a Cassie state. In this research, we fabricated a superoleophobic mesh with a multi-scale hierarchical structure to increase the pressure resistance and adjusted a size of the mesh hole.

Titanium 양극산화시 TiO2 의 형상 및 특성에 미치는 전해질의 영향 (Influence of Electrolyte on the Shape and Characteristics of TiO2 during Anodic Oxidation of Titanium)

  • 최예지;정찬영
    • Corrosion Science and Technology
    • /
    • 제22권3호
    • /
    • pp.193-200
    • /
    • 2023
  • Titanium alloy (grade-4) is commonly used in industrial and medical applications. To improve its corrosion resistance and biocompatibility for medical use, it is necessary to form a titanium oxide film. In this study, the morphology of the oxide film formed by anodizing Ti-grade 4 using different electrolytes was analyzed. Wetting properties before and after surface modification with SAM coating were also observed. Electrolytes used were categorized as A, B, and C. Electrolyte A consisted of 0.3 M oxalic acid and ethylene glycol. Electrolyte B consisted of 0.1 M NH4F and 0.1 M H2O in ethylene glycol. Electrolyte C consisted of 0.07 M NH4F and 1 M H2O in ethylene glycol. Samples B and C exhibited a porous structure, while sample A formed a thickest oxide film with a droplet-like structure. AFM analysis and contact angle measurements showed that sample A with the highest roughness exhibited the best hydrophilicity. After surface modification with SAM coating, it displayed superior hydrophobicity. Despite having the thickest oxide film, sample A showed the lowest insulation resistance due to its irregular structure. On the other hand, sample C with a thick and regular porous oxide film demonstrated the highest insulation resistance.