• Title/Summary/Keyword: Resistance Prediction

Search Result 610, Processing Time 0.026 seconds

A Development of Skid Resistance Prediction Model Considering Water Film Thickness and Vehicle Speed (수막두께와 속도를 고려한 도로포장면의 미끄럼저항 예측모델 개발)

  • Jo, Shin Haeng;Lee, Soo Hyung;Yoo, In Kyoon;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3D
    • /
    • pp.223-229
    • /
    • 2012
  • Skid resistance is defined as the friction between pavement surfaces and vehicle tires. Lower skid resistances were observed as the vehicle speeds the water film thicknesses were increased according to the analysis results using computer modeling. The lift force is calculated from the analysis results and depends on vehicle speeds and the water film thickness. A modified IFI(international friction index) skid resistance prediction model was developed to reduce the differences between the IFI resistance prediction model and the actual skid resistance. The correlation analysis results between the IFI prediction model and the actual skid resistance revealed that the $R^2$ using the modified IFI prediction model was 0.64 whereas the $R^2$ using the conventional IFI prediction model was 0.49. This presents the modified prediction model is better than the conventional one. An improved precise prediction model is to be obtained if water film thicknesses are considered in the modified prediction model.

A Review on Ice Resistance Prediction Formulas for Icebreaking Vessels (쇄빙선박에 작용하는 빙저항 추정식 고찰)

  • Jeong, Seong-Yeob;Choi, Kyung-Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.513-522
    • /
    • 2008
  • In this paper, one of the widely-used ice resistance prediction methods, introduced by Spencer(1992) of the Institute for Ocean Technology, Canada, is reviewed. Spencer's component-based scaling system for ship-ice model tests is analysed to estimate the ice resistance of various types of icebreaking vessels (Canadian MV Arctic, Terry Fox, R-Class icebreaker, US icebreakers Polar Star and Healy, Russian SA-15 cargo ships, Japanese PM Teshio and a model ship). The general form and the non-dimensional coefficients in ice resistance prediction formula are obtained using the published ice model test and full-scale sea trial data. The applicability of Spencer's method on R-Class icebreaker is discussed to estimate ice resistance for the larger icebreaking cargo vessels. Additional parameters to account for the difference in hull forms of icebreakers and cargo vessels are recommended to be included in the Spencer's original ice resistance prediction formula.

Review of stud shear resistance prediction in steel-concrete composite beams

  • Bonilla, Jorge;Bezerra, Luciano M.;Mirambell, Enrique;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.355-370
    • /
    • 2018
  • In steel-concrete composite beams, longitudinal shear forces are transferred across steel flange-concrete slab interface by means of shear connectors. The connector behavior is highly non-linear and involves several complex mechanisms. The design resistance and stiffness of composite beams depends on the shear connection behavior and the accuracy in the connector resistance prediction is essential. However determining the stud shear resistance is not an easy process: analytical methods do not give an adequate response to this problem and it is therefore necessary to use experimental methods. This paper present a summary of the main procedures to predict the resistance of the stud shear connectors embedded in solid slab, and stud shear connectors in composite slab using profiled steel sheeting with rib perpendicular to steel beam. A large number of experimental studies on the behavior of stud shear connectors and reported in the literature are also summarized. A comparison of the stud shear resistance prediction using six reference codes (AISC, AASHTO, Eurocode-4, GB50017, JSCE and AS2327.1) and other procedures reported in the literature against experimental results is presented. From this exercise, it is concluded that there are still inaccuracies in the prediction of stud shear resistance in all analysed procedures and that improvements are needed.

A Study on the Hull Resistance Prediction Methods of Barge Ship for Towing Force Calculation of Disabled Ships (사고선박 예인력 계산을 위한 바지선의 선체 저항 성능 추정법 연구)

  • Kim, Eun-Chan;Choi, Hyuek-Jin;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.211-216
    • /
    • 2013
  • Most of hull resistance prediction methods which are used to calculate the towing force of disabled ships are very simple and old-fashioned. In particular, in cases of barge ships, a method similar to the US Navy Towing Manual is being used. This paper reviewed the US Navy Towing Manual and the notification method of Korea Ministry of Oceans and Fisheries and proved that these prediction methods are irrational and inaccurate. Furthermore, a new Modified-Yamagata-Barge method is introduced as a more rational and accurate resistance prediction method which can be applied in case of barge ships.

The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion (철근부식에 의한 육지 콘크리트의 잔존수명 예측)

  • 정우용;윤영수;송하원;변근주
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

Prediction of ship resistance in level ice based on empirical approach

  • Jeong, Seong-Yeob;Choi, Kyungsik;Kang, Kuk-Jin;Ha, Jung-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.613-623
    • /
    • 2017
  • A semi-empirical model to predict ship resistance in level ice based on Lindqvist's model is presented. This model assumes that contact between the ship and the ice is a case of symmetrical collision, and two contact cases are considered. Submersion force is calculated via Lindqvist's formula, and the crushing and breaking forces are determined by a concept of energy consideration during ship and ice impact. The effect of the contact coefficient is analyzed in the ice resistance prediction. To validate this model, the predicted results are compared with model test data of USCGC Healy and icebreaker Araon, and full-scale data of the icebreaker KV Svalbard. A relatively good agreement is achieved. As a result, the presented model is recommended for preliminary total resistance prediction in advance of the evaluation of the icebreaking performance of vessels.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

Strength Prediction Model for Flat Plate-Column Connections (플랫 플레이트 내부 접합부의 강도산정모델)

  • 최경규;박홍근;안귀용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.897-902
    • /
    • 2002
  • The failure of flat plate connection is successive failure process accompanying with stress redistribution, hence it is necessary to compute the contributions of each resistance components at ultimate state. In the present study, the interactions of resultant forces at each faces of connection, i.e. shear, bending moment and torsional moment are considered in the assessment of strength of slab. As a result the strength prediction model for connection is made up as combination of bending resistance, shear resistance and torsional resistance. The proposed method is verified by the experimental data and numerical data of continuous slabs.

  • PDF

A Practical Method of Prediction of Resistance for Displacement Vessels

  • Doctors, Lawrence J.
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.2
    • /
    • pp.1-10
    • /
    • 1997
  • The prediction of the total resistance of a ship is generally based on considering it to be a simple sum of the viscous resistance and the wave resistance. An experimental approach for predicting full-size ship resistance on this basis is practical but obviously has the deficiency that a model has to be built for each prototype of interest and the resulting tank tests are time consuming. On the other hand, purely theoretical calculations of the wave resistance, using, for example, the Michell theory, require relatively little computer time and give an excellent portrayal of the overall variation of the vessel resistance as a function of forward speed. Unfortunately, there are sufficient differences between this theory and the measured results to make this method impractical for design purposes. The proposal examined here is to use a data bank of experimental resistance results to modify the theoretical predictions. It is demonstrated that the technique will produce remarkably accurate resistance predictions and can take into account the effects of the water depth, any restriction of canal or river width, as well as the prismatic coefficient, and other geometric parameters.

  • PDF

An Experimental Study on the Chemical Resistance of Concrete(II) -The case of mortar with silica sand particle- (콘크리트의 내화학성에 관한 실험적 연구(II)-규사 분말을 치환한 모르터의 경우-)

  • 윤보현;김제원;설광욱;김명재;부척량
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.153-163
    • /
    • 1997
  • This paper is an experimental study of the chemical resistance of mortar which contains silica sand particles. The possible use of silica sand particles in the future as an admixture for improving chemical resistance of mortar is examined in mortar model experiments. The possibility of using mortar model its prediction models for the chemical resistance of concrete is examined. The results obtained are as follows. Since the experimental results from the chemical resistance tests based on the kinds and the amount of replaced admixture are similar to those from the concrete. mortar model could be used as a prediction model of chemical resistance of concrete.