• Title/Summary/Keyword: Resistance Moment

Search Result 462, Processing Time 0.03 seconds

Development of Connection Details of RC Wale-Steel Beam Joint Subjected to Axile and Shear Load (축력 및 전단력을 받는 RC 띠장-철골 보 접합부의 접합연결재 개발)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.189-196
    • /
    • 2004
  • The RC wale-steel beam stud connection may have smaller moment and shear resistance because the tensile and shear capacity of the studs are limited by the depth of RC beam. Especially, they are subjected to compressive axial load. This paper describes the experimental works to develop the connection details of RC wale-steel beam joints subjected to shear and axial loads. Shear connectors developed in this study are closed C type deformed bar, opened C type deformed bar, and U type deformed bar. From shear test, the shear performance of RC wale-steel beam joint with the developed connectors are compared with the stud connection. Test results indicated that the developed connectors were very effiecive to increase the shear strength.

A Study on the Standard Preparation for Cab Design of EMU with the 180km/h of Maximum Speed (180km/h급 간선형 전기동차 운전실 설계기준 마련 연구)

  • Lhim, Jea-Eun;Jung, Do-Won;Kim, Chi-Tae
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1229-1234
    • /
    • 2009
  • The rolling stocks of KORAIL are KTX, Saemaulho Multiple Unit(PP), New Electrical Locomotive(DL), Electrical Locomotive(EL), Diesel Locomotive, Metropolitan Commuter Train(CDC), VVVF and Resistance Controlled Multiple Unit, etc. EMU with the maximum speed of 150km/h is under the test run at the moment. Electrical Multiple Units for mainlines with 180km/h speed are supposed to be introduced as a substitute for Saemaulho Multiple Unit which is scheduled to be out of service. But the specification standard for the control board design of train driver's cab does not exist and there is no a study for layout and type of controlling device with driver's ergonomical approach. That's why the types of controller and operating are different from rolling stocks, which has high possibility of driver's human error and needs education whenever a new car comes in. Based on the opinion poll of drivers, design specification of safety engineering and ergonomics for controlling devices and safety facilities can improve exact control for devices and deal quickly with an emergency so as to improve rolling stock safety and operational efficiency.

  • PDF

Parametric Study on Reinforced Concrete Columns under Blast Load (주철근의 개수 및 단면비에 따른 폭발하중을 받는 철근콘크리트 기둥의 해석적 연구)

  • Choi, Hosoon;Kim, Min-Sook;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.219-226
    • /
    • 2012
  • Columns are the key elements supporting load in structure. Column failure causes the structure to collapse. It is important to evaluate residual strength for damaged columns under blast load for preventing progressive collapse. In this paper, columns were investigated to compare the blast resistance on the change of the number of steel bars within the range of reinforcement ratio. And this study was carried out 4 different analytical models to evaluate effects of aspect ratio. The results indicate that the vertical strain was unaffected by the number of steel bars and aspect ratio. As the number of steel bars facing blast load increase, the blast resisting capacity of the columns was improved in the lateral strain. Also, the analysis results showed that a large moment of inertia of area, as compared to a small one would be superior in residual strength as well as force of restitution.

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Numerical Calculation of the Flow around a Ship by Means of Rankine Source Distribution (Rankine Source 분포를 이용한 선체주위 자유표면류의 수치계산)

  • Jae-Shin,Kim;Kwi-Joo,Lee;Soon-Won,Joa
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.32-42
    • /
    • 1990
  • The method using Rankine Soure distribution over the hull surface and undisturbed free surface was applied to calculate the free surface flow around a ship. The ship hull as well as a local portion of the undisturbed free surface arc geometrically represented by quadrilateral panels and the source density is determined so as to satisfy the linearized free surface condition based on the double model flow. The pressure distribution, wave resistance, wave profile and hydrodynamic sinkage force and trim moment for the Wigley hull and the Series 60 hull with $C_B=0.60$ were calculated in the fixed condition. The calculated results were compared with the measured values. The dependance of the solution on the panel arrangement, particularly on the free suraface, was also studied through 11 numerical test cases for the Wigley hull.

  • PDF

A Study on the Evaluation of Load Carrying Capacity of Highway Bridges based on Structural Reliability Methods (구조신뢰성(構造信賴性) 방법에 의한 도로교(道路橋)의 내하력(耐荷力) 평가(評價)에 관한 연구(硏究))

  • Shin, Jae Chul;Cho, Hyo Nam;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.107-120
    • /
    • 1987
  • This study is directed for the evolution of the rational approaches to the systematic evaluation of the load carrying capacity of bridges based on the practical and second moment reliability methods. A new approach for the evaluation of load carrying capacity of exsisting bridges is proposed in this study. The key idea behind this approach is in the fact that the load carrying capacity of an existing bridges under extreme traffic truck loadings may be measured by evaluating and classifying the reliability state of the bridge in terms of reliability index(${\beta}$). The rating formulas developed in this study are applied for the evaluation of load carrying capacity of the several actual deteriorated bridges inspected and tested for the capacity rating, and the results are compared with those calculated by using the current rating formulas. It may be concluded that the proposed rating formulas which is derived based on reliability methods, have to eventually replace the current rating formula when the basic statistical data for the resistance and load effects become available in the near future.

  • PDF

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Parametric Study on Seismic Performance of Internally Confined Hollow CFT Column (내부 구속 중공 CFT 교각의 내진성능에 대한 매개변수 연구)

  • Yeom, Eung-Jun;Kim, Hyun-Jong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • The internally confined hollow-concrete filled tube (ICH-CFT) column has two tubes on the both sides (hollow part and outer part) of the concrete. The inner tube and the outer tube perform great seismic abilities, ductility and absorption of energy due to the steel tubes and the hollow part. So, the study of this column type for the practical use is needed. In this study, the qualitative analysis about seismic capacities depending on parameters is performed for the practical design of the ICH-CFT column. The parameters are diameter of column, hollow ratio and thickness of tubes with the same resistance of the moment. Also, the economical evaluation of ductility and comparison with CFT column make this study to be of practical use. Especially, a change of seismic performance depends on the hollow ratio and the thickness of the outer tube, and the economical hollow ratios according to the thickness of the outer tube in the ICH-CFT column are suggested.

Formulation of Optimal Design Parameters and Failure Map for Metallic Sandwich Plates with Inner Dimpled Shell Structure Subject to Bending Moment (굽힘 하중을 받는 딤플형 내부구조 금속 샌드위치 판재의 최적설계변수의 수식화 및 파손선도)

  • Seong Dae-Yong;Jung Chang-Gyun;Yoon Seok-Joon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.127-136
    • /
    • 2006
  • Metallic sandwich plates with inner dimpled shell subject to 3-point bending have been analyzed and then optimized for minimum weight. Inner dimpled shells can be easily fabricated by press or roll with high precision and bonded with same material skin sheets by resistance welding or adhesive bonding. Metallic sandwich plates with inner dimpled shell structure can be optimally designed for minimum weight subject to prescribed combination of bending and transverse shear loads. Fundamental findings for lightweight design are presented through constrained optimization. Failure responses of sandwich plates are predicted and formulated with an assumption of narrow sandwich beam theory. Failure is attributed to four kinds of mechanisms: face yielding, face buckling, dimple buckling and dimple collapse. Optimized shape of inner dimpled shell structure is a hemispherical shell to minimize weight without failure. It is demonstrated that bending stiffness of sandwich plate is 2 or 3 times larger than solid plates with the same strength. Failure mode boundaries and iso-strength lines dependent upon the geometry and yield strain of the material are plotted with respect to geometric parameters on the failure map. Because optimal parameters of maximum strength for given material weight can be selected from the map, analytic solutions for maximum strength are expressed as a function of only material property and proposed strength. These optimal parameters match well with numerical optimal parameters.

The Tendency of Scientific Research of Tree Improvement and Forest Management in Japan (일본(日本)의 임목육종(林木育種) 및 삼림경영연구동향(森林經營硏究動向))

  • Kim, Young Ho;Son, Doo Sik
    • Current Research on Agriculture and Life Sciences
    • /
    • v.2
    • /
    • pp.42-55
    • /
    • 1984
  • The direction of scientific researches on tree improvement and forest management in several universities and research institutes in Japan can be summarized as follows: They put a great emphasis on sugi, Cryptomeria japonica and cypress, Chamaecyparus oblusa which are two major conifer species largerly planted in the Japanese forestry. In the research of sugi, a great concern has been made in evaluating inheritance of forest tree, quantitative characters and genetic parameter of growth, and in breeding for resistance to diseases and insects and to all the natural calamities. Interaction between environmental conditions and genetic nature of tree can be concerned factors in relation with forest damage, together with silvicultural conditions and pest infestation. Selfing hybrids of $F_1$ made from crossing twisted-leaf sugi, defomity leaf type and midori sugi, normal leaf type segregated the normal needle, twisted needle, green leaf and albino leaf type. It seemed that separation of many defomity individuals can be governed by two dominant complementary genes and from the near loci of which it was detected lethal genes. 52% of Japanese forestry is occupied by the small forest landowners like Korean forestry. This made difficulty for forest improvement such as progressive afforestation and for capital accumulation form forestry. The Forest Corporation was established at first in 1959 to aming at productive forestry structure and forest management, and afforestation. For these purpose, 35 Forest Corporations are at moment operating throughout Japan. However, investment in forestry business becomes less attractive since the wage in forest production duction increased in higher trend. than timber price. Therefore, an artifical afforestation becomes yearly decreased. At present. the self-sufficient rate of timber production in Japan is about 35%, and so a great effort is being made to increase self-sufficient rate of timber production.

  • PDF