• Title/Summary/Keyword: Resistance Coefficient

Search Result 1,558, Processing Time 0.029 seconds

Effect of load on the wear and friction characteristics of a carbon fiber composites (탄소 섬유 복합재의 마찰 및 마모 특성에 미치는 하중 효과)

  • Koh, Sung-Wi;Yang, Byeong-Chun;Kim, Hyung-Jin;Kim, Jae-Dong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.344-350
    • /
    • 2004
  • This is the study on dry sliding wear behavior of unidirectional carbon fiber reinforced epoxy matrix composite at ambient temperature. The wear rates and friction coefficients against the stainless steel counterpart specularly processed were experimentally determined and the resulting wear mechanisms were microscopically observed. Three principal sliding directions relative to the dominant fiber orientation in the composite wear selected. When sliding took place against smooth and hard counterpart, the highest were resistance and the lowest friction coefficient were observed in the antiparallel direction. When the velocity between the composite and the counterpart went up, the wear rate increased. The fiber destruction and cracking caused fiber bending on the contact surface, which was discovered to be dominant wear mechanism.

Geotechnical characteristics and consolidation properties of Tianjin marine clay

  • Lei, Huayang;Feng, Shuangxi;Jiang, Yan
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.125-140
    • /
    • 2018
  • Tianjin, which is located on the west shore of the Bohai Sea, is part of China's Circum-Bohai-Sea Region, where very weak clay is deposited. From the 1970s to the early $21^{st}$ century, Tianjin marine clay deposits have been the subject of numerous geotechnical investigations. Because of these deposits' geological complexity, great depositional thickness, high water content, large void ratio, excessive settlement, and low shear strength, the geotechnical properties of Tianjin marine clay need to be summarized and evaluated based on various in situ and laboratory tests so that Tianjin can safely and economically sustain more infrastructure in the coming decades. In this study, the properties of Tianjin marine clay, especially its consolidation properties, are summarized, evaluated and discussed. The focus is on establishing correlations between the geotechnical property indexes and mechanical parameters of Tianjin marine clay. These correlations include the correlations between the water content and the void ratio, the depth and the undrained shear strength, the liquid limit and the compression index, the tip resistance and the constrained modulus, the plasticity index and the ratio of undrained shear strength and the preconsolidation pressure. In addition, the primary consolidation properties of Tianjin marine clay, such as the intrinsic compression line (ICL), sedimentation compression line (SCL), compression index, $C_c$, coefficient of consolidation, $C_v$, and hydraulic conductivity change index, $C_{kv}$, are evaluated and discussed. A secondary consolidation property, i.e., the secondary compression index, $C_a$, is also investigated, and the results show that the ratio of $C_a/C_c$ for Tianjin marine clay can be used to calculate $C_a$ in secondary consolidation settlement predictions.

Mass Transfer Phenomena in Polycondensation Reaction of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 축중합 반응에서 물질 전달 현상)

  • 이성진;정성일
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • The instantaneous removal of ethylene glycol is very important fur obtaining high molecular weight polymer because of the reversibility of the polycondensation reaction of poly(ethylene naphthalate)(PEN). In this study, we investigated the mass transfer phenomena in the thin film of PEN oligomer where the polycondensation reaction took place at 280$^{\circ}C$ and under 0.1mmHg. In case of less than 0.025cm film thickness the mass transfer resistance through the thin film of the polymer melt was not so high that the overall reaction rate was governed only by the polycondenstion reaction. Both the mass transfer model and the diffusion model predicted the experimenatal data well but the diffusion model showed faster reaction rate in the low molecular weight range than the mass transfer model . It was estimated from the two models that the diffusivity was 4.7${\times}$10$\^$-6/$\textrm{cm}^2$/sec and the mass transfer coefficient was 1.4 ${\times}$10$\^$-4/cm/sec both of which were smaller than In case of poly(ethylene terephthalate).

Micro Structure and Surface Characteristics of NiCr Thin films Prepared by DC Magnetron Sputter according to Annealing Conditions (DC 마그네트론 스퍼터링 NiCr 박막의 열처리 조건에 따른 미세구조 및 표면특성)

  • Kwon, Yong;Kim, Nam-Hoon;Choi, Dong-You;Lee, Woo-Sun;Seo, Yong-Jin;Park, Jin-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.554-559
    • /
    • 2005
  • Ni/Cr thin film is very interesting material as thin film resistors, filaments, and humidity sensors because their relatively large resistivity, more resistant to oxidation and a low temperature coefficient of resistance (TCR). These interesting properties of Ni/Cr thin films are dependent upon the preparation conditions including the deposition environment and subsequent annealing treatments. Ni/Cr thin films of 250 nm were deposited by DC magnetron sputtering on $Al_2O_3/Si$ substrate with 2-inch Ni/Cr (80/20) alloy target at room temperature for 45 minutes. Annealing treatments were performed at $400^{\circ}C,\;500^{\circ}C,\;and\;600^{\circ}C$ for 6 hours in air or $H_2$ ambient, respectively. The clear crystal boundaries without crystal growth and the densification were accomplished when the pores were disappeared in air ambient. Most of surface was oxidic including NiO, $Ni_2O_3$ and $Cr_xO_y$(x=1,2, y=2,3) after annealing in air ambient. The crystal growth in $H_2$ ambient was formed and stabilized by combination with each other due to the suppression of oxidized substance on film surface. Most oxidic Ni was restored when the oxidic Cr was present due to its stability in high-temperature $H_2$ ambient.

Formation of Ni Oxide Thin Film and Analysis of Its Characteristics for Thermal Sensors (열형센서용 니켈 산화막의 형성 및 특성분석)

  • Lee, Eung-Ahn;Seo, Jeong-Hwan;Noh, Sang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.169-173
    • /
    • 2005
  • Ni oxide thin films were formed through annealing treatment in the atmosphere after Ni thin films deposited by a r.f. magnetron sputtering method and then electric and material properties were analyzed for application to thermal sensors. Resistivity of Ni thin films decreased after annealing treatment at 30$0^{\circ}C$ and 40$0^{\circ}C$ for five hours due to crystallization of Ni thin films but the value increased over 45$0^{\circ}C$ because of Ni thin film's oxidation. Resistivity values of Ni thin films were in the range of 10.5 $\mu$Ωcm/$^{\circ}C$ to 2.84${\times}$10$^4$$\mu$Ωcm/$^{\circ}C$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation such as 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of 0 $^{\circ}C$∼150 $^{\circ}C$. The results demonstrate that Ni oxide thin films of annealing treatment at 40$0^{\circ}C$ for 5hours could be more advantageous than pure Ni thin films and Pt thin films from a point of output properties and TCR, applied to thermal sensors.

Wear Properties of Nuclear Graphite IG-110 at Elevated Temperature (원자력용 흑연 IG-110 에 대한 고온 마모 특성 평가)

  • Wei, Dunkun;Kim, Jaehoon;Kim, Yeonwook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.469-474
    • /
    • 2014
  • The high temperature gas-cooled reactor (HTR-10) is designed to produce electricity and hydrogen. Graphite is used as reflector, support structures, and a moderator in reactor core; it has good resistance to neutron and is a suitable material at high temperatures. Friction is generated in the graphite structures for the core reflector, support structures, and moderator because of vibration from the HTR-10 fuel cycle flow. In this study, the wear characteristics of the isotropic graphite IG-110 used in HTR-10 were evaluated. The reciprocating wear test was carried out for graphite against graphite. The effects of changes in the contact load and sliding speeds at room temperature and $400^{\circ}C$ on the coefficient of friction and specific wear rate were evaluated. The wear behavior of graphite IG-110 was evaluated based on the wear surfaces.

Humidity-Sensitive Characteristics and Reliabilities of Polymeric Humidity Sensors Using 2-Methacryloxyethyl dimethyl 2-hydroxyethyl ammonium brornide (2-Methacryloxyethyl dimethyl 2-hydroxyethyl ammonium bromide를 이용한 고분자 습도센서의 감습 특성 및 신뢰성)

  • Lee, Chil-Won;Gong, Myoung-Seon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.461-466
    • /
    • 1999
  • The humidity sensor containing ammonium salt was prepared from the copolymer of 2-methacryloxyethyl dimethyl 2-hydroxyethyl ammonium bromide (MDHAB)/MMA/DAEMA = 6/3/1. The humid membrane was fabricated on the gold/alumina electrode by dipping. The impedances were $298k{\Omega},\;11k{\Omega}$, and $2.3k{\Omega}$ at 40%RH, 70%RH and 90%RH, respectively, at $5^{\circ}C$ and the humidity-sensitive characteristics were suitable for low temperature humidity sensor. The temperature-dependent coefficient between $5^{\circ}C$ and $20^{\circ}C$ was found to be $-0.80%RH/^{\circ}C$ and the hysteresis falled in the ${\pm}2%RH$ range. The response time was found to be 38 sec for the relative humidity ranging from 34%RH to 88%RH at $20^{\circ}C$. The reliabilities such as temperature cycle, humidity cycle, high temperature and humidity resistance, electrical load stability, stability of long-term storage and water durability were measured and evaluated for the application as a humidity sensor.

  • PDF

The effect of anti-stripping on asphalt mixtures depending on the types of anti-stripping agents (박리방지제에 따른 아스팔트 혼합물의 박리방지 특성 연구)

  • Kim, Won Jae;Tran Van, Phuc;Do Thanh, Chung;Park, Chang Kyu;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-135
    • /
    • 2017
  • PURPOSES: The objective of this study is to evaluate the effect of anti-stripping on asphalt mixtures constituting anti-stripping agents. METHODS : Based on the literature review, asphalt mixture added with anti-stripping agents was prepared, and these asphalt mixtures were evaluated for anti-stripping properties for each anti-stripping agent through various lab tests, namely, tensile strength ratio (TSR), dynamic immersion test, uniaxial compression test, and indirect tensile strength test (IDT). The liquid anti-stripping agents used in the lab test were premixed with each asphalt binder (PG 64-22, PG 76-22) before being mixed with the aggregate. RESULTS :The result of the TSR test revealed that the effect of anti-stripping was highest when hydrated lime and liquid anti-stripping agent W were added. The correlation coefficient $R^2$ between the TSR result and cohesion ratio is 0.99, which indicates that the sensitivity of the TSR to moisture damage is reliable from the mechanical point of view. The covering ratio of the asphalt binder to the liquid anti-stripping agent W was determined to be higher than that to the other liquid anti-stripping agents. CONCLUSIONS :It is considered that the improved moisture resistance of asphalt mixture as a result of the use of anti-stripping agents can reduce the incidence of various pavement damages such as portholes caused by stripping, and the performance life of the asphalt road pavement can be prolonged.

Development of High Density Inductively Coupled Plasma Sources for SiH4/O2/Ar Discharge (고밀도 유도 결합 플라즈마 장치의 SiH4/O2/Ar 방전에 대한 공간 평균 시뮬레이터 개발)

  • Bae, S.H.;Kwon, D.C.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.426-434
    • /
    • 2008
  • A space averaged $SiH_4/O_2/Ar$ simulator for the high density inductively coupled plasma sources for $SiH_4/O_2/Ar$ discharge is developed. The developed simulator uses space averaged fluid equations for electrons, positive ions, negative ions, neutral species, and radicals in $SiH_4/O_2/Ar$ plasma discharge, and the electron heating model including the anomalous skin effect. Using the developed simulator, the dependency of the density of charged particles, neutral particles, and radicals, the electron temperature, the plasma resistance, and the power absorption coefficient for the RF power and pressure is calculated.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF