• Title/Summary/Keyword: Resistance Change Ratio

Search Result 283, Processing Time 0.04 seconds

Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP (자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험)

  • 최현수;박진섭;정민수;강병희
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress but hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPGFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

Resistive Switching Effects of Zinc Silicate for Nonvolatile Memory Applications

  • Im, Minho;Kim, Jisoo;Park, Kyoungwan;Sok, Junghyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.348-352
    • /
    • 2022
  • Resistive switching behaviors of a co-sputtered zinc silicate thin film (ZnO and SiO2 targets) have been investigated. We fabricated an Ag/ZnSiOx/highly doped n-type Si substrate device by using an RF magnetron sputter system. X-ray diffraction pattern (XRD) indicated that the Zn2SiO4 was formed by a post annealing process. A unique morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM). As a result of annealing process, 50 nm sized nano clusters were formed spontaneously in 200~300 nm sized grains. The device showed a unipolar resistive switching process. The average value of the ratio of the resistance change between the high resistance state (HRS) and the low resistance state (LRS) was about 106 when the readout voltage (0.5 V) was achieved. Resistance ratio is not degraded during 50 switching cycles. The conduction mechanisms were explained by using Ohmic conduction for the LRS and Schottky emission for the HRS.

Effect of Synthetic Hydrotalcite on Salt Water Resistance of Chloroprene rubber Foam (Synthetic Hydrotalcite가 클로로프렌 고무 발포체의 내염수성에 미치는 영향 연구)

  • Park, Eun Young;Seo, Eun Ho;Lim, Sung Wook
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • In this study, we investigated for synthetic hydrotalcite in chloroprene rubber foam. Experiments were carried out to find the optimum content ratio by controlling the contents of MgO and Hydrotalcite. Swelling test in toluene immersion was made to measure the crosslinking density of CR foams, and the cure properties were investigated with flat die rheometer and Mooney viscosity. The difference of hardness, tensile strength and elongation at break were observed after immersing in 7% NaCl or 21% NaCl solutions for a day and four days. In addition, the volume change and water content remaining in CR foam were measured after immersing NaCl solution. As content of MgO increased, the value of the cure torque tended to increase, but it was almost constant above 2phr of MgO. However, the Mooney viscosity decreased with increasing MgO content. The crosslinking density, determined by the swelling ratio, showed that the CR compound without MgO showed a higher degree of swelling. When the content of hydrotalcite/MgO was 3:2, it was the lowest volume change of CR form. Also, As the content of hydrotalcite decreased, the difference of mechanical properties before and after immersion NaCl solution increased.

Molecular Analysis of Spontaneous Mutations in erm(A) and erm(C) Selected In vitro as a Constitutive MLS$_B$ Resistant Staphylococci (MLS$_B$계 항생물질 유도 내성 세균에서 In vitro로 선발된 지속성 내성형 erm(A)와 erm(C)의 분자적 특성 규명)

  • Yoon, Eun-Jeong;Jin, Sung-Hye;Choi, Eung-Chil;Shim, Mi-Ja
    • YAKHAK HOEJI
    • /
    • v.51 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • The predominant Macrolides-Lincosamide-Streptogramin B (MLS$_B$) antibiotics resistance genes in staphylococci are erm(A) and erm(C). There is the phenomenon that the ratio of constitutively MLS$_B$ antibiotics resistance (cMLS) in erm(A) is much higher than in erm(C). Thus, we confirmed that the difference of the mutation ratio between erm(A) and erm(C) makes the phenomenon. We examined 8 staphylococci carrying inducibly expressed (iMLS) erm(A) or erm(C) genes. After overnight incubation in the presence of the non-inducer MLS$_B$ antibiotics, spontaneous mutants constitutively expressed MLS$_B$ resistance were selected. Against our expectation, the mutation ratio of erm(A) was lower than erm(C). Therefore, possibilities of other factors determining the ratio of cMLS phenotype might be concerned. All the mutants showed sequence alterations in translational attenuator and all the alterations seemed to give rise to change the second structure of mRNA to express constitutively. For erm(A), 4 different types of sequence deletions ranging from 72 bp to 122 bp and 3 different types of duplications ranging 24 bp to 93 bp were detected. Also, there were 9 different types of duplications ranging 15bp to 154bp in erm(C).

Evaluation of Fineness Levels on the Sulfate Resistance of Cement Matrix with GGBS

  • Moon, H.Y.;Kim, S.S.;Lee, S.T.;Jung, H.S.;Kim, J.P.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1097-1100
    • /
    • 2003
  • This paper describes the sulfate resistance of cement pastes and mortar with or without ground granulated blast furnace slag (GGBS). Sulfate attack was performed on the cement pastes and mortar, which had been prepared by using a water-binder ratio of 0.45. Variables were the fineness levels of GGBS and the concentrations of two sulfate solution. In this present study, compressive strength and length change were carried out to evaluate the sulfate resistance of GGBS with various fineness levels. From the test results, it can be concluded that the deterioration modes of cement matrix with GGBS were dependent on the exposure solutions. Moreover, the influence of fineness levels of GGBS on the sulfate resistance was somewhat little because of a relative short exposure period.

  • PDF

Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface (전기저항 측정법을 이용한 탄소섬유/기지 간 계면에서의 섬유 미끌림 정도 측정방법)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.205-210
    • /
    • 2012
  • The single carbon fiber tensile test was performed with electrical resistance measurement. Tensile property of single carbon fiber which accompanied by the relationship between the electric resistance and the strain was investigated. Since the collected data showed a linear relationship between them, the coefficient of fiber slip ratio (FSR) was obtained by computation. The fragmentation specimen (FS) was tested under tensile loading, and the single carbon fiber broke first due to the stress transferring form matrix to reinforcing fiber. The stress distribution of carbon fiber could be observed via the electrical resistance change. Slipping between carbon fiber and matrix was predicted based on the fragmentation test results, and the FSR was used to evaluate interfacial adhesion comparatively. The large FSR indicated poor interfacial bonding. Work of adhesion between carbon fiber and matrix was measured to verify the FSR method, and two results exhibited a consistent conclusion.

A Study on the Freeze-Thaw Resistance of Water-permeable Concretes (투수성 콘크리트의 동결융해 저항성에 관한 연구)

  • 은재기;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

Sulfate Resistance of Portland CementMatrices (포틀랜드시멘트계 경화체의 황산염저항성)

  • 문한영;이승태;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.714-717
    • /
    • 2000
  • To consider sulfate resistance of cement pastes and motars for 3 types of portland cements which have different $C_3A$ contents an silicate ratio($C_3S/C_2S$), they were immersed in 5% sodium sulfate solution for 400 days. SEM analysis and ($Ca(OH)_2$ contents of cement pastes, and compressive strength and length change of cement mortars, were performed to investigate the effects of ($C_3$ and ($Ca(OH)_2$ contents. According to the results of this study, low heat portland cement pastes, and compressive strength and length change of cement mortars, were performed to investigate the effects of C3A and ($Ca(OH)_2$ contents. According to the results of this study, low heat portland cement had a good sulfate resistances because of a small quantity of gypsum and ettringite due to less ($Ca(OH)_2$ contents. However, ordinary portland cement had an adverse result. This was also confirmed by SEM analysis.

  • PDF

Characteristics of Change in Properties of Self-Adhesive Butyl Rubber Waterproofing Sheet by Increasing the Amount of Reclaimed Rubber (자착식 부틸고무 방수시트의 재생고무 증량 배합에 따른 물성변화 특성)

  • Choi, Su-Young;Park, Jin-Sang;Choi, Sung-Min;Kwon, Young-Hwa;Kim, Young-Keun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.252-253
    • /
    • 2021
  • In this study, butyl rubber, which is the main material constituting the self-adhesive butyl rubber waterproofing sheet, was mixed with reclaimed rubber, and tensile strength, tear strength, peeling resistance strength, and adhesion strength were measured for sample prepared by mixing ratio. As a result, it was confirmed that peeling resistance strength and adhesion strength decreased as the reclaimed rubber content increased, and tensile strength and tear strength did not change significantly.

  • PDF

A Study on the Diamond Wheel Wear in Ceramic Grinding (세라믹 연삭에서 다이아몬드 숫돌 마멸에 관한 연구)

  • 공재향;유봉환;소의열;이근상;유은이
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.344-348
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness after using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous grinding of ceramics, cutting edge ratio of resinoid bond wheel decreases. For the case of vitrified bond wheel, cutting edge ratio does not change.

  • PDF