• Title/Summary/Keyword: Resin flow simulation

Search Result 42, Processing Time 0.022 seconds

The Effects of Injection Molding Conditions of Polypropylene on the Linear Shrinkage and Weight of Molded Parts (폴리프로필렌의 사출성형조건이 성형품의 선형수축률과 중량에 미치는 영향)

  • 유중학;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.322-329
    • /
    • 1995
  • Series of experimental work was performed to mold tensile specimens by using the injection molding machine Mold temperature, melt temperature and packing time were chosen as processing parameters for studying the effects of those conditions on the linear shrinkage of final product. Here, each processing variable was decided from the numerical simulation and resin manufacturer's suggested value. The effects of molding conditions on the linear shrinkage in flow direction of the resin were analyzed by measuring the parts 2, 10, 30 and 60 days after molding. As a result, the linear shrinkage increased with the higher mold and melt temperature, and the change of mold temperature has shown more influence. The linear shrinkage of polypropylene has been found to progress up to 30 day with the lapse of the time, and the amount of the linear shrinkage has shown to be between 2.14% and 2.75%. In addition, the effects of packing pressure on the weight has shown to be extremely significant up to freezing time, and proper packing time of the tensile specimen has been found to be 2.0 seconds.

Prediction of the Flow Coefficient of a PFA Lined Ball Valve Using the CFD Simulation Method (CFD 해석방법을 이용한 PFA 라이닝 볼밸브의 유량계수 예측)

  • Jeon, Hong-Pil;Lee, Won-Seob;Kim, Chul-Soo;Lee, Jong-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.35-38
    • /
    • 2016
  • A PFA lined ball valve, which is machined with fluorinated resin PFA to its inner part for improving corrosion resistance, non-stickness, heat-resistance, has been widely used in semiconductor/LCD manufacturing processes with the high purity chemicals as working fluid. Due to the safety concerns, the experiments for measuring the flow coefficient of a PFA lined ball valve should be conducted with water at room temperature according to IEC standards. However, it is required to know the real flow coefficient with the real working fluid, because the flow coefficient is critical to correctly design valves in piping system. In this study, we calculated the flow coefficient of a PFA lined ball valve 40A with hydrochloric acid ($40^{\circ}C$ 36% HCl) as the working fluid using a commercial CFD package, ANSYS CFX v15. The computational results had a good agreement with the measured data and showed a little difference between water and hydrochloric acid as the working fluid of a PFA lined ball valve.

Effects on the process factors of blow molding affects to the PET bottle (블로우 성형공정변수가 PET 용기에 미치는 영향에 관한 연구)

  • Kim, Jong-Dug;Go, Young-Bae;Kim, Ok-Rae;Park, Hyung-Pil;Kim, Hong-Ryul;Kwon, Chang-Oh
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.7-10
    • /
    • 2008
  • Injection-stretch blowing system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

  • PDF

A Study on the Molding Technology for the Preform of Blow Molding Through Compression Molding (압축성형을 통한 블로우 성형품용 프리폼 성형기술 연구)

  • Choi, S.H.;Min, H.K.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.3-8
    • /
    • 2007
  • Novel compression molding system for preform has been developed in this study. The preforms for injection blow molding and injection stretch blow molding are being manufactured by injection molding. However it contains gate mark that affects the bottom crack in the PET bottle. The compression molded preform does not contain gate mark, thus the appearance quality of bottle has been increased and the residual stress near gate(bottom of the bottle) has been reduced. The thickness distributions, haze, and transmittance are well accepted for the preform. Also, flow characteristics of the resin between a core and cavity could be analyzed through computer simulation.

NUMERICAL SIMULATION OF THE EFFECTS OF RESIN SUPPLY TEMPERATURE ON OPTICAL FIBER COATING THICKNESS (피복재 공급온도가 광섬유 피복두께에 미치는 영향에 대한 전산유동해석)

  • Choi, J.S.;Kwak, H.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.96-99
    • /
    • 2011
  • Fiber coatings are essential in optical fiber manufacturing, since they provide the protective layers from the surface damages and the adequate fiber strength. Flow and temperature fields of coating liquid in a fiber coating applicator are numerically investigated by using a commercial CFD software. The main focus of this computational study is on the thermal effects by viscous dissipation and the effects of coating supply temperature on the final fiber coating thickness. The numerical results reveal that the thermal effects play a major role in the high-speed optical fiber coating process and give substantial influences on the determination of coating thickness. Changing the supply temperature of coating liquid is found to relieve the radial variation of coating liquid viscosity in the coating die and it can be an effective way to control the fiber coating thickness.

  • PDF

Development of a Set of an Experimental Equipment of Westerly Wave for High School (고등학교에 적합한 편서풍 파동 실험장치 개발)

  • Lee, Soon-Hwan;Park, Gwang-Soon;Kim, Hee-Soo
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.177-187
    • /
    • 2006
  • Due to a lack of reproducibility and visibility of the conventional equipment for westerly wave simulation, it is difficult to have indoor experiments at high school that show the stream of Hadley cell. A modified improvement of the old one improves the problem. The side wall and bottom of the new equipment is made by copper and acrylic resin, respectively, in order to clarify the difference between the water temperature inside and outside of the water tank. The equipment also has a high quality digital record for generating exact analysis of the results. And we also carried out several experiments that relate theoretical and experimental aspection of westerly wave. Temperature Detected Sheet (TDS) in flow visualization unit provides not only visual information of liquid flow, but also clear understanding of the relation between upper and lower wind flow structure. And the liquid stream simulated in indoor experiment using proposed equipment is commensurate with westerly wave in real atmosphere. The efficiency of educational properties of the proposed equipment is verified indirectly by Likert Scales survey of high school teachers.

A study on the molding of dome shaped plastic parts embedded with electronic circuits (전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구)

  • Seong, Gyeom-Son;Lee, Ho-Sang
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

Process Development of Gas Injection Molding Using Computer Aided Engineering (컴퓨터지원 공학(CAE)을 이용한 기체 사출 성형의 공정 개선)

  • 장우진;조정환;심상은;김건중;정성택;최순자
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.263-272
    • /
    • 2004
  • Using computer simulation, the processibility and properties of the inst겨ment panel of automobile produced by gas injection molding were predicted and evaluated. The P-V-T data of ABS, resin were used in the gas injection molding process in order to estimate the mold filling phenomena. The optimum process conditions were found by adjusting the process parameters including pressure, filling time, the positions of gas channel and runner. The process was simplified and the final instrument panel produced by the gas injection molding was found to have improved dimension stability compared to the one produced by conventional injection molding.

Optimization of Curing Pressure for Automatic Pressure Gelation Molding Process of Ultra High Voltage Insulating Spacers (초고압 절연 스페이서의 자동가압 겔화 성형 공정을 위한 경화 보압의 최적화 )

  • Chanyong Lee;Hangoo Cho;Jaehyeong Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.56-62
    • /
    • 2024
  • By introducing curing kinetics and chemo-rheology for the epoxy resin formulation for ultra-high voltage gas insulated switchgear (GIS) Insulating Spacers, a study was conducted to simulate the curing behavior, flow and warpage analysis for optimization of the molding process in automatic pressure gelation. The curing rate equation and chemo-rheology equation were set as fixed values for various factors and other physical property values, and the APG molding process conditions were entered into the Moldflow software to perform optimization numerical simulations of the three-phase insulating spacer. Changes in curing shrinkage according to pack pressure were observed under the optimized process conditions. As a result, it was confirmed that the residence time in the solid state was shortened due to the lowest curing reaction when the curing holding pressure was 3 bar, and the occurrence of deformation due to internal residual stress was minimized.

Investigation of Gas Evolution in Shell Cores during Casting Processes of Aluminum Alloys (알루미늄 합금 주조공정의 쉘 코아 가스 발생 전산모사 연구)

  • In-Sung Cho;Jeong-Ho Nam;Hee-Soo Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.4
    • /
    • pp.187-193
    • /
    • 2023
  • Shell core making is an excellent process in terms of formability and desanding, but when the molten aluminum comes into con- tact with the shell core, gas generation by pyrolysis of the resin is inevitable. In addition, when the ventilation is inadequate, pores will remain inside the casting, which can directly lead to defects of the casting. While studies on the gas generation behavior of shell core making have been reported, the modeling of gas generation has not been extensively investigated. We will develop a gas evolution analysis method that considers the relationship between temperature and gas quantity for the core to be developed. We then use the developed method to analyze the flow and solidification behavior of metal molten metal during core mold design and low-pressure casting of cylinder head products, and predict the occurrence of casting defects to derive a casting method that min- imizes the occurrence of defects.