• Title/Summary/Keyword: Resilient attachment

Search Result 12, Processing Time 0.019 seconds

A Photoelastic Stress Analysis of Bilateral Distal Extension Removable Partial Denture with Attachment Retainers (정밀 부착형 유지장치에 따른 양측성 유리단 국소의치의 광탄성 응력분석)

  • Cho, Hye-Won;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.23 no.1
    • /
    • pp.97-112
    • /
    • 1985
  • The purpose of this study was to evaluate the stress patterns developed in supporting structures by removable partial denture with attachment retainers. The attachments tested were Dalbo(miniature) attachment, resilient Ceka attachment, rigid Ceka attachment, precision and sleeve attachment, and R.P.I. clasp as a contrast. 3-dimensional photoelastic stress analysis was used to record the isochromatic and isoclinic fringe patterns and to calculate principal stress components at measuring points. The results showed that: 1. The maximum compressive stress on residual ridge was produced under the loading point with Dalbo and resilient Ceka attachment, distal to the loading point with rigid Ceka and precision and sleeve attachment, and mesial to the loading point with R.P.I. clasp. 2. The Dalbo attachment produced the most stress on residual ridge, and the least stress on abutment teeth. and resilient Ceka attachment showed favorable stress distribution. 3. Rigid Ceka attachment produced higher compressive stress on buccal. alveolar crest, and precision and sleeve attachment produced higher compressive stress on distal alvelolar crest and mesial surface of the root apex in abutment teeth. 4. R.P.I. clasp produced higher compressive stress on mesial alveolar crest.

  • PDF

A THREE DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS OF IMPLANT-SUPPORTED MANDIBULAR OVERDENTURE ACCORDING TO IMPLANT NUMBER AND ATTACHMENT TYPE (임플란트의 수와 어태치먼트의 종류에 따른 하악 임플란트 지지 오버덴춰의 삼차원 광탄성 응력분석)

  • Han, Sang-Hoon;Tae, Yoon-Sup;Jin, Tae-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.577-608
    • /
    • 1997
  • The purpose of this study is to evaluate the stress distribution in the bone around dental implants supporting mandibular overdenture according to the number of implant and the type of attachment. Two or four implants were placed in an edentulous mandibular model and three dimensional photoelastic stress analysis was carried out to measure the fringe order around the implant supporting structure and also to calculate principal stress components at cervical area of each implant. The attachments tested were rigid and resilient type of Dolder bar, Round bar, Hader bar and Dal-Ro attchment. The results were as follows ; 1. In 2-implant supported overdenture using Round bar, Hader bar, and Dal-Ro attachment, compressive stress pattern was observed on the supporting structure of implant on loaded side, while tensile stress pattern in unloaded side. 2. In 2-implant supported overdenture using Dolder bar, the rigid Dolder bar shared the occlusal loads between 2 implants in a more favorable manner than was exhibited by the resilient type, while the resilient type placed a more stress on the distocervical area of the implant on the loaded side. But compressive stress pattern was observed in both the loaded and unloaded sides in either case. 3. In 2-implant supported overdenture, rigid and resilient type of Dolder bar exhibited more cross arch involvement than the Round bar, Hader bar, or Dal-Ro attachment. 4. In 4-implant supported overdenture using resilient Dolder bar and Hader bar, stress turned out to be distributed evenly among the implants between loaded and unloaded side, but thor was no reduction in the magnitude of the stress in the surrounding structure of implant contratry to 2-implant supported overdenture. 5. The stress pattern at cervical area of implant was different with the number of implant or the type of attachment but the overload, harmful to surrounding structure of implant, was not observed.

  • PDF

A STRESS ANALYSIS OF THE IMPLANT - SUPPORTED OVERDENTURE USING STRAIN GAUGE (스트레인 게이지를 이용한 임플랜트 지지 오버덴춰의 응력분석)

  • Cho, Hye-Won;Kwon, Joo-Hong;Lee, Wha-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.1
    • /
    • pp.93-103
    • /
    • 1999
  • Stress distribution on mandibular implants supporting overdentures were registered in vitro experimental model by means of 4 rosette gauges which were placed around the implant. The overdenture attachments used in this study were the Resilient Dolder bar, Rigid Bolder bar, Round bar, Hader bar & Dal-Ro attachment. An occlusal jig was placed on the overdenture and the loading sites were 3 points which mimicked working, balancing, and median relations. With 5 and 10kg loading, strains were measured by strain indicator(P-3500, Measurement group, Raleigh, USA), and using these data, maximum and minimum principal stresses and Von Mises stress were calculated and evaluated. The results were as follows : There was a tendency of high stress concentration in the lingual side of the implant, and in the buccal side low stress was developed regardless of the attachment systems. The resilient Bolder bar concentrated highest stress among the attachment systems, and the Round bar and the Dal-Ro attachment provided comparatively low stresses around the implant. The rigid Bolder bar concentrated high stress in the mesial side, and the Dal-Ro attachment developed tensile stress patterns in the lingual and distal sides of the implant at the balancing relation.

  • PDF

Overdentures using newly designed metal ball attachment containing predetermined gap with stress breakers (일정한 간극으로 새롭게 고안된 완압형 볼 어태치먼트를 이용한 피개의치 수복)

  • Yoo, Jin-Joo;Kim, Man-Yong;Yoon, Joon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.3
    • /
    • pp.311-318
    • /
    • 2017
  • Several types of attachments have been used for implant supported and/or retained overdentures. Locator is one of the stud type attachments and it has been generally used. However, the colored matrix is resilient and vulnerable to wear, so frequent post-insertion maintenance is needed. To solve this problem, it is necessary to introduce innovative attachment system. Overdentures using Air Gap attachment (AGA) has improved masticatory function and facial esthetics. AGA is made of metal, so it could be more resistant to wear or friction than the other resilient attachments. Nevertheless, AGA plays a role in stress breakers because it allows movement during denture movement with predetermined gap. In addition, both pre-existing implants and natural teeth were successfully used for connection of AGA. AGA could replace other unsplinted type of attachments. Overdentures using AGA could provide satisfactory result in terms of function, esthetics and retention. However, long term follow up is needed.

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

Impact of attachment, temperament and parenting on human development

  • Hong, Yoo Rha;Park, Jae Sun
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.12
    • /
    • pp.449-454
    • /
    • 2012
  • The purpose of this review is to present the basic concepts of attachment theory and temperament traits and to discuss the integration of these concepts into parenting practices. Attachment is a basic human need for a close and intimate relationship between infants and their caregivers. Responsive and contingent parenting produces securely attached children who show more curiosity, self-reliance, and independence. Securely attached children also tend to become more resilient and competent adults. In contrast, those who do not experience a secure attachment with their caregivers may have difficulty getting along with others and be unable to develop a sense of confidence or trust in others. Children who are slow to adjust or are shy or irritable are likely to experience conflict with their parents and are likely to receive less parental acceptance or encouragement, which can make the children feel inadequate or unworthy. However, the influence of children's temperament or other attributes may be mitigated if parents adjust their caregiving behaviors to better fit the needs of the particular child. Reflecting on these arguments and our childhood relationships with our own parents can help us develop the skills needed to provide effective guidance and nurturance.

Comparison of changes in retentive force of three stud attachments for implant overdentures

  • Kim, Su-Min;Choi, Jae-Won;Jeon, Young-Chan;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.303-311
    • /
    • 2015
  • PURPOSE. The aim of this study was to compare the changes in retentive force of stud attachments for implant overdentures by in vitro 2-year-wear simulation. MATERIALS AND METHODS. Three commercially available attachment systems were investigated: Kerator blue, O-ring red, and EZ lock. Two implant fixtures were embedded in parallel in each custom base mounting. Five pairs of each attachment system were tested. A universal testing machine was used to measure the retentive force during 2500 insertion and removal cycles. Surface changes on the components were evaluated by scanning electron microscopy (SEM). A Kruskal-Wallis test, followed by Pairwise comparison, was used to compare the retentive force between the groups, and to determine groups that were significantly different (${\alpha}$<.05). RESULTS. A comparison of the initial retentive force revealed the highest value for Kerator, followed by the O-ring and EZ lock attachments. However, no significant difference was detected between Kerator and O-ring (P>.05). After 2500 insertion and removal cycles, the highest retention loss was recorded for O-ring, and no significant difference between Kerator and EZ lock (P>.05). Also, Kerator showed the highest retentive force, followed by EZ lock and O-ring, after 2500 cycles (P<.05). Based on SEM analysis, the polymeric components in O-ring and Kerator were observed to exhibit surface wear and deformation. CONCLUSION. After 2500 insertion and removal cycles, all attachments exhibited significant loss in retention. Mechanism of retention loss can only be partially explained by surface changes.

Photoelastic stress analysis of the mandibular unilateral free-end removable partial dentures according to the design (하악 편측 유리단 가철성 국소의치의 설계에 따른 광탄성 응력 분석)

  • Park, Cheol-Woo;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.206-214
    • /
    • 2009
  • Statement of problem: There are common clinical cases in which the mandibular first and second molars are missing unilaterally. Purpose: This study was designed to compare and evaluate the magnitude and distribution of stress produced by four kinds of mandibular unilateral free-end removable partial dentures that could be applied clinically in Kennedy class II cases. Material and methods: Four unilateral free-end removable partial dentures using clasp, Konus crown, resilient attachment, and flexible resin were fabricated on the photoelastic models of the Kennedy class II cases. The vertical load of 6㎏ was applied on the central fossa of the first molar of every removable partial denture in the stress freezing furnace and the photoelastic models were frozen according to the stress freezing cycle. After these models were sliced mesio-distally to a thickness of 6mm, the photoelastic isochromatic white and black lines of the sliced specimens were examined with the transparent photoelastic experiment device and photographs were taken with a digital camera. The fringe order numbers at eight measuring points in the photograph were measured with the naked eye. Results: The maximum fringe order number of each sliced specimen and the fringe order number at the residual ridge just below the loading point were in the decreasing order of the unilateral removable partial dentures using flexible resin followed by clasp, resilient attachment, and Konus crown. The fringe order number at the root apex of the second premolar was in the decreasing order of the unilateral removable partial dentures using clasp followed by flexible resin, Konus crown, and resilient attachment. Conclusion: The removable partial denture using Konus crown showed the most equalized stress distribution to the supporting alveolar bone of abutment teeth and residual ridge under the vertical loads. The removable partial denture using flexible resin can be applied to the case that has a better state of residual ridge than abutment teeth.

EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향)

  • Kim Jin-Yeol;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

EFFECT OF ANCHORAGE SYSTEMS AND PALATAL COVERAGE OF DENTURE BASE ON LOAD TRANSFER WITH MAXILLARY IMPLANT-SUPPORTING OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (상악 임플란트 overdenture에서 anchorage system과 의치상 구개피개가 하중전달에 미치는 영향)

  • Je, Hong-Ji;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Jang-Seop;Hwang, Jai-Sug
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.397-411
    • /
    • 2004
  • Purpose: The purpose of this study was to determine the effect of anchorage systems and palatal coverage of denture base on load transfer in maxillary implant-supported overdenture. Material and methods: Maxillary implant -supported overdentures in which 4 implants were placed in the anterior region of edentulous maxilla were fabricated, and stress distribution patterns in implant supporting bone in the case of unilateral vertical loading on maxillary right first molar were compared with each other depending on various types of anchorage system and palatal coverage extent of denture base using three-dimensional photoelastic stress analysis. Two photoelastic overdenture models were fabricated in each anchorage system to compare with the palatal coverage extent of denture base, as a result we got eight models : Hader bar using clips(type 1), cantilevered Hader bar using clips(type 2), Hader bar using clip and ERA attachments(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4). Result: 1. In all experimental models, the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. In every experimental models with or without palatal coverage of denture base, maximum fringe orders on the distal ipsilateral implant supporting bone in an ascending order is as follows; type 3, type 1, type 4, and type 2. 3. Each implants showed compressive stresses in all experimental models with palatal coverage of denture base, but in the case of those without palatal coverage of denture base, tensile stresses were observed in the distal contralateral implant supporting bone. 4. In all anchorage system without palatal coverage of denture base, higher stresses were concentrated on the most distal implant supporting bone on loaded side. 5. The type of anchorage system affected in load transfer more than palatal coverage extent of the denture base. Conclusion: To the results mentioned above, in the case of patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant, and poor bone quality, selecting a resilient type attachment or minimizing the distal cantilevered bar is considered to be an appropriate method to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.