• Title/Summary/Keyword: Residual stress measurement

Search Result 232, Processing Time 0.026 seconds

Measurement of the Residual Stress in the Steel Wires by using Focused Ion Beam and Digital Image Correlation Method (집속 이온빔과 디지털 화상 관련법을 이용한 고 탄소 미세 강선의 잔류 응력 측정)

  • Yang, Y.S.;Bae, J.G.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.323-328
    • /
    • 2007
  • The residual stress in axial direction of the steel wires has been measured by using a method based on the combination of the focused ion beam(FIB) milling and digital image correlation(DIC) program. The residual stress is calculated from the measured displacement field before and after the introduction of a slot along the steel wires. The displacement is obtained by the digital correlation analysis of high-resolution scanning electron micrographs, while the slot is introduced by FIB milling with low energy beam. The experimental procedures are described and the feasibilities are demonstrated in steel wires fabricated with different conditions. It reveals that the tensile residual stress is formed in all steel wires and this is strongly influenced by the fabrication conditions.

Gradient of the Residual Stress distribution in Optical fiber by the Heat Treatment Temperature (열처리 온도에 따른 광섬유 잔류응력 분포의 변화)

  • Sin, In-Hui;Ju, Seong-Min;Han, Won-Taek;Kim, Deok-Yeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2005.07a
    • /
    • pp.208-209
    • /
    • 2005
  • The gradient of the residual stress distribution by the heat treatment temperature in the commercial single mode fiber was investigated. The heat treatment of the optical fiber was carried out at 700${\circ}$C, 1100${\circ}$C, and 1200${\circ}$C for 1 hour by using the halogen lamp and the residual stress measurement of the optical fiber was accomplished by using the inverse linear polarizing method. Mechanical residual stress was relaxed and thermal residual stress was invested by the heat treatment.

  • PDF

Moving Temperature Profile Method for Efficient Three-Dimensional Finite Element Welding Residual Stress Analysis for Large Structures (대형구조물의 효율적 3차원 용접잔류응력해석을 위한 새로운 이동 온도 프로파일 방법)

  • Cheol Ho Kim;Jae Min Gim;Yun Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.75-83
    • /
    • 2023
  • For three-dimensional finite element welding residual stress simulation, several methods are available. Two widely used methods are the moving heat source model using heat flux and the temperature boundary condition model using the temperature profile of the welded beads. However, each model has pros and cons in terms of calculation times and difficulties in determining welding parameters. In this paper, a new method using the moving temperature profile model is proposed to perform efficiently 3-D FE welding residual stress analysis for large structures. Comparison with existing experimental residual stress measurement data of two-pass welding pipe and SNL(Sandia National Laboratories) mock-up canister shows the accuracy and efficiency of the proposed method.

Residual Stress Measurement for Circular Disk Using Fraction Mechanics Approach (파괴역학을 이용한 원판형 부재의 잔류응력 측정)

  • 강기주;최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1218-1226
    • /
    • 1993
  • A method, so called 'successive cracking method,' for measuring residual stresses in a circular disk is proposed. In this method residual stresses are evaluated using a fracture mechanics approach, that is, the strains measured at a point on a edge of the disk as a crack is introduced and extended from the edge are used to deduce the residual stress distribution which existed in the uncracked disk. Through finite element analysis and comparative experiments with generally used sectioning method, the successive cracking method is shown to be valid, simple and effective to measure 2-dimensional residual stress distribution in a circular disk.

The Finite Element Analysis for Prediction of Residual Stresses Induced by Cold Expansion (홀확장 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Ko, Myung-Hoon;Heo, Sung-Pil;Hyun, Cheol-Seung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.470-474
    • /
    • 2000
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are, expanding rate, inserting direction of mandrel, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, Two-dimensional axisymmetric finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress and plastic deformation. Maximum compressive residual stress could be increase about 7 percent using the 2-step cold expansion method.

  • PDF

Residual Stress Evaluation Caused by Press Forming and Welding of 600MPa Class Circular Steel Tube Using Hole-Drilling Strain Gage Method (홀드릴링 변형 게이지법을 이용한 600MPa급 원형 강관 제작상의 잔류응력평가)

  • Im, Sung Woo;Lee, E.T.;Shim, Hyun Ju;Kim, Jong Won;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.625-631
    • /
    • 2006
  • Residual stresses in structural materials are stresses that exist in the objective without the application of any service or other external loads. Manufacturing processes are the most common causes of residual stress. To examine the effect and the distribution of residual stress due to press forming and welding in the production of a 600MPa-class steel tube, a residual stress evaluation test was performed. The measurement used the Hole-Drilling Strain Gauge Method and evaluated the distribution of residual stress, which measured a total of 59 places near the welding line.

Welding Residual Stress Measurement by Barkhausen Noise Method (Barkhausen noise를 이용한 용접 잔류응력 측정)

  • Lee, S.S.;Ahn, B.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.10 no.1
    • /
    • pp.91-95
    • /
    • 1990
  • Welding residual stress was measured by Barkhausen noise method. The calibration experiment was done for the quantitative analysis. The specimen for the calibration experiment must has the same thermo-mechanical history as the actual material to be tested. The Barkhausen noise were analysed by the pulse-height distribution. The results show that the distribution and magnitude of welding residual stress from Barkhausen noise method are in good agreement with those from blind hole method.

  • PDF

Residual Stress Prediction in Multi-layer Butt Weld Using Crack Compliance Method (컴플라이언스법에 의한 다층 맞대기 이음의 잔류응력 추정)

  • Kim, Yooil;Lee, Jang Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.74-79
    • /
    • 2012
  • It depends on the joint configuration, dimensions and constraints of the joint whether the residual stress at the root of single-sided butt weld is tensile or not. Therefore, recommendation is generally made that high R ratio should be used in the fatigue test of welded joint in order to prevent excessively long life caused by compressive residual stress. In this research, the residual stress profile in butt weld joint was obtained through compliance method, using successive extension of a slot and measurement of the variation of strain during the slot extension. The residual stress profile was firstly assumed to be the linear summation of Legendre polynomials up to 9th order excluding 0th and 1st order. Strain variation on the surface was measured while the slot was being extended by cutting to find out the 8 unknown coefficients of each polynomial term. The cut was made by the electric discharge machine. It was concluded that the residual stress near the surface is positive valued, however, it turned into the negative value as soon as it passed through 2 or 3 mm of the depth.

AJM을 이용한 HDM에 의한 잔류응력 계측에 관한 연구 2

  • 최병길;박영조;이택순;전상윤
    • Journal of Welding and Joining
    • /
    • v.8 no.4
    • /
    • pp.76-82
    • /
    • 1990
  • Lots of research works have been done to improve the accuracy of the hole drilling method to measure residual stress by many investigators. In this study, first, size effect of specimen was analyzed based on the solution of hole in a strip under tension. If the ratio of hole diameter tothe strip width is less than 0.2, the stress distribution around hold may be given from the solution of hole in an infinite plate. Second, the residual stress above $0.6{\sigma}_y$(yield stress) may be measured less than the actual stress by 10-15 percent. Third, eccentricity of hole relative to the rosette center effects on the accuracy of residual stress measurements by 10 percent. The error due to eccentricity of hole can be corrected by the iteration method or the direct method.

  • PDF

Residual Stress Measurement in Hard Turned Workpiece (SKD11의 하드터닝 가공 열처리 시편의 표면잔류응력 측정에 관한 연구)

  • 김종혁;이태홍;장동영;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.148-155
    • /
    • 2003
  • Most manufacturing processes such as welding, cutting and molding generate residual stresses on the surface of manufactured parts. Between compressive and tensile residual stresses, the tensile residual stress is harmful to the surface integrity, which results in reduced fatigue life and causes other structural failures when the service stresses are superimposed on the residual stresses. In the research, the residual stresses in the hardened tool steel (SKD11) were measured using hole-drilling method. The specimens were prepared through hard turning. Most of residual stresses in the machined surface were compressive.