• Title/Summary/Keyword: Residual stress measurement

Search Result 232, Processing Time 0.022 seconds

A Study on the Measurement of Residual Stress in Rolled Steel for Automobile using X-ray Diffraction (X선 회절을 이용한 자동차 압연강의 잔류응력 측정에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.150-157
    • /
    • 2002
  • In textured material, diffraction angle $2{\theta}$ usually shows a nonlinear relation against $sin^2{\psi}$ due to elastic anisotropy of crystals. SPHD and SPCD steel is cold-rolled carbon steel for automobile. The characteristics X-ray for stress measurement is Cr $K_{\alpha}\;and\;Mo\;K_{\alpha}$ characteristic X-ray. The $2{\theta}-sin^2{\psi}$ diagram under elastic strain seems to have a linear behavior using regression line of data but has a nonlinear behavior in distribution of data by Cr $K_{\alpha}$ characteristic X-ray. As the plastic strain of specimen increases, the nonlinearity of $2{\theta}$ with respect to $sin^2{\psi}$ increases remarkably. On the other hand, the diffraction angle $2{\theta}$ by Mo $K_{\alpha}$ characteristic X-ray shows a good linearity on $2{\theta}-sin^2{\psi}$ diagram under plastic strain as well as elastic strain. Therefore, this paper presents the measurement of residual stress in cold-rolled carbon steel for automobile using penetration depth of Mo $K_{\alpha1}$ characteristic X-ray and multiplicity factor of crystal diffraction plane.

Evaluation of Axial Residual Stress in Multi-Pass Drawn High Carbon Steel Wire Considering Effective Stress-Strain Curve at High Strain (고변형률 영역의 유효응력-변형률 곡선을 고려한 고탄소강 다단 신선 와이어 축방향 잔류응력 평가)

  • Lee, Sang-Kon;Kim, Dae-Woon;Kim, Byung-Min;Jung, Jin-Young;Ban, Duk-Young;Lee, Seon-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.70-75
    • /
    • 2010
  • The aim of this study is to evaluate the axial residual stress in multi-pass drawn high carbon steel wire by using FE analysis and XRD. When FE analysis is applied to evaluate the residual stress in drawn wire of multi-pass drawing process, obtaining the reliable effective stress-strain curve at high strain is very important. In this study, a model, which can express the reliable effective stress-strain curve at high strain, is introduced based on the Bridgman correction and tensile test for multi-pass drawn high carbon steel wires. By using the introduced model, FE analysis was carried out to evaluate the axial residual stress in the drawn wires. Finally, the effectiveness of the FE analysis with the introduced stress-strain relation was verified by the measurement of residual stress in the drawn wires through XRD. As a result, the evaluated residual stress of FE analysis shows good agreement with the measured residual stress.

FINITE ELEMENT ANALYSIS AND MEASUREMENT ON THE RELEASE OF RESIDUAL STRESS AND NON-LINEAR BEHAVIOR IN WELDMENT BY MECHANICAL LOADING(I) -FINITE ELEMENT ANALYSIS-

  • Jang, Kyoung-Bok;Kim, Jung-Hyun;Cho, Sang-Myoung
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.378-383
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non-coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

Finite Element Analysis and Measurement on the Release of Residual Stress and Non-linear Behavior in Weldment by Mechanical Loading(I) -Finite Element Analysis-

  • Jang, K.B.;Kim, J.H.;Cho, S.M.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.29-32
    • /
    • 2002
  • In previous study, the decrease and recovery of total stiffness in welded structure was discussed on the basis of experimental examination through tensile loading and unloading test of welded specimen. The recovery of structure stiffness was caused by the release of welding residual stress through mechanical loading. In this study, analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result. Thermal elasto-plastic analysis for welding process was performed by non- coupled analysis. Analysis results of welding process were transfer to elasto-plastic model for tensile loading & unloading by restart technique. In elasto-plastic analysis model for mechanical loading & unloading, hardening appearance of weld metal was considered by rezoning technique and tying technique was used for JIG condition of test machine.

  • PDF

Numerical analysis of post welding heat treatment base on the thermal creep elastic-plastic theory (점열탄소성 이론에 의한 용접후열처리에 대한 수치해석)

  • 방한서;차용훈;오율권;노찬승;김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.113-123
    • /
    • 1997
  • The welding residual stresses produced by welding frequently cause a crack and promote stress corrosion etc. in heat affected zone contained with external load and weakness of material. For the purpose pof relaxation of welding residual stress, post welding heat teratment(PWHT) is widely used. In this paper, the computer program which is based on Thermal-Elasto-plastic-creep theory for plane deformation on developed by finite element method (F.E.M) and verified its propriety by experimental measurement and also by using the developed computer program. The mechanical behavior of butt welding joint is clairfied during PWHT.

  • PDF

Finite Element Analysis of Residual Stress Evolution during Cure Process of Silicone Resin for High-power LED Encapsulant (고출력 LED 인캡슐런트용 실리콘 레진의 경화공정중 잔류응력 발달에 대한 유한요소해석)

  • Song, Min-Jae;Kim, Heung-Kyu;Kang, Jeong-Jin;Kim, Kwon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.219-225
    • /
    • 2011
  • Silicone resin is recently used as encapsulant for high-power LED module due to its excellent thermal and optical properties. In the present investigation, finite element analysis of cure process was attempted to examine residual stress evolution behavior during silicone resin cure process which is composed of chemical curing and post-cooling. To model chemical curing of silicone, a cure kinetics equation was evaluated based on the measurement by differential scanning calorimeter. The evolutions of elastic modulus and chemical shrinkage during cure process were assumed as a function of the degree of cure to examine their effect on residual stress evolution. Finite element predictions showed how residual stress in cured silicone resin can be affected by elastic modulus and chemical shrinkage behavior. Finite element analysis is supposed to be utilized to select appropriate silicone resin or to design optimum cure process which brings about a minimum residual stress in encapsulant silicone resin.

The Characteristics of Residual Stresses in the Welded Joint of P92 Steel for Fossil Power Plant by the X-ray Diffraction (X-ray 회절을 이용한 화력발전소용 P92 강 용접부의 잔류응력 특성)

  • Hyun, Jung-Seob;Yoo, Keun-Bong;Choi, Hyun-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.7
    • /
    • pp.116-123
    • /
    • 2008
  • In the fossil power plant, the reliability of the components which consist of the many welded parts depends on the quality of welding. The residual stress is occurred by the heat flux of high temperature during weld process. This decreases the mechanical properties as the strength of fatigue and fracture or causes the stress corrosion cracking and fatigue fracture. Especially, the accidents due to the residual stress occurred at the weld parts of high-temperature and high-pressure pipes and steam headers. Also, the residual stress of the welded part in the recently constructed power plants has been brought into relief as the cause of various accidents. The aim of this study is the measurement of the residual stress using the x-ray diffraction method. The merits of this are more accurate and applicable than other methods. The materials used for the study is P92 steel for the use of high temperature pipe on super critical condition. The variables of tests are the post-weld heat treatment, the surface roughness and the depth from the original surface. The test results were analyzed by the distributed characteristics of the full width at half maximum intensity (FWHM) in x-ray diffraction intensity curve and by the relation of hardness with FWHM.

Effects of Sand Blasting on TiAlN Coating on WC Hard Metal Alloy Tip (WC위 TiAlN 코팅층에 미치는 Sand Blasting 처리의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.54-61
    • /
    • 2021
  • The effect of the sand blasting before TiAlN coating in the manufacture of WC hard metal alloy tips have been studied. For four different tips, according to the status of processing of the sand blasting and the coating, residual stress measurement by X-ray diffraction and several tests for mechanical properties have been conducted. The results suggest that there was no difference in static mechanical properties, such as hardness, surface roughness and elastic modulus, between two coatings. Furthermore, compressive residual stress was generated equally on their surfaces. Additionally, the compressive residual stress in substrate WC was found to increase greatly when subjected to sand blasting treatment. However, the compressive residual stress decrease after coating regardless of sand blasting treatment. Nevertheless, it is confirmed that the compressive residual stress generated in the coating after sand blasting is less than that in the non-sandblasting coating. This was attributed to the plastic deformation occurring in the WC substrate during coating after sand blasting. In contrast to the scratch test results, sand blasting was assumed to have a negative effect on the adhesion between the coating and substrate. This is because there is a high possibility of microcracks due to plastic deformation in the WC substrate under the coating after sand blasting.

A Study on Residual Stress for Fatigue Fracture Surface in General Purpose Structural Steel using X-ray Diffraction (X-선 회절을 이용한 피로하중을 받는 일반구조용강의 잔류응력에 관한 연구)

  • 조석수;장득열;주원식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.248-261
    • /
    • 1999
  • The fatigue life of mechanical components and structures has been influenced by mechanical, material and environmental conditions. It is important to search out the load type and size for accurate cause of fracture at the damaged surface of material. The fractographic method by x-ray diffraction can utilize residual stress $\sigma$_r and half-value breadth B and find out the types and the mechanical conditions of fracture. This study showed the relationship between fracture mechanical parameters $\Delta$K, $K_{max}$ and X-ray residual stress $\sigma$_r for normalized SS41 steel with homogeneous crystal structure and M.E.F. dual phase steel(martensite encapsulated islands of ferrite). The fatigue crack propagation tests were carried out under stress ratios 0.1 and 0.5. The x-ray diffraction technique according to crack propatation direction was applied to fatigue fractured surface. Residual stress $\sigma$_r was independent on stress ratios by arrangement of $\Delta$K. The equation of $\sigma$_r$\Delta$K was established by the experimental data. Therefore, fracture mechanical parameters can be estimated can be estimated by the measurement of X-ray parameters.

  • PDF

Residual stresses and viscoelastic deformation of an injection molded automotive part

  • Kim, Sung-Ho;Kim, Chae-Hwan;Oh, Hwa-Jin;Choi, Chi-Hoon;Kim, Byoung-Yoon;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • Injection molding is one of the most common operations in polymer processing. Good quality products are usually obtained and major post-processing treatment is not required. However, residual stresses which exist in plastic parts affect the final shape and mechanical properties after ejection. Residual stresses are caused by polymer melt flow, pressure distribution, non-uniform temperature field, and density distribution. Residual stresses are predicted in this study by numerical methods using commercially available softwares, $Hypermesh^{TM},\;Moldflow^{TM}\;and\;ABAQUS^{TM}$. Cavity filling, packing, and cooling stages are simulated to predict residual stress field right after ejection by assuming an isotropic elastic solid. Thermo-viscoelastic stress analysis is carried out to predict deformation and residual stress distribution after annealing of the part. Residual stresses are measured by the hole drilling method because the automotive part selected in this study has a complex shape. Residual stress distribution predicted by the thermal stress analysis is compared with the measurement results obtained by the hole drilling method. The molded specimen has residual stress distribution in tension, compression, and tension from the surface to the center of the part. Viscoelastic deformation of the part is predicted during annealing and the deformed geometry is compared with that measured by a three dimensional scanner. The viscoelastic stress analysis with a thermal cycle will enable us to predict long term behavior of the injection molded polymeric parts.